Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-x-10=14
Use the distributive property to multiply 3x+5 by x-2 and combine like terms.
3x^{2}-x-10-14=0
Subtract 14 from both sides.
3x^{2}-x-24=0
Subtract 14 from -10 to get -24.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-24\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -1 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-24\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 3}
Multiply -12 times -24.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 3}
Add 1 to 288.
x=\frac{-\left(-1\right)±17}{2\times 3}
Take the square root of 289.
x=\frac{1±17}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±17}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{1±17}{6} when ± is plus. Add 1 to 17.
x=3
Divide 18 by 6.
x=-\frac{16}{6}
Now solve the equation x=\frac{1±17}{6} when ± is minus. Subtract 17 from 1.
x=-\frac{8}{3}
Reduce the fraction \frac{-16}{6} to lowest terms by extracting and canceling out 2.
x=3 x=-\frac{8}{3}
The equation is now solved.
3x^{2}-x-10=14
Use the distributive property to multiply 3x+5 by x-2 and combine like terms.
3x^{2}-x=14+10
Add 10 to both sides.
3x^{2}-x=24
Add 14 and 10 to get 24.
\frac{3x^{2}-x}{3}=\frac{24}{3}
Divide both sides by 3.
x^{2}-\frac{1}{3}x=\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{1}{3}x=8
Divide 24 by 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=8+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=8+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{289}{36}
Add 8 to \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=\frac{289}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{17}{6} x-\frac{1}{6}=-\frac{17}{6}
Simplify.
x=3 x=-\frac{8}{3}
Add \frac{1}{6} to both sides of the equation.