Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x+2\right)^{2}=25
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
9x^{2}+12x+4=25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4-25=0
Subtract 25 from both sides.
9x^{2}+12x-21=0
Subtract 25 from 4 to get -21.
x=\frac{-12±\sqrt{12^{2}-4\times 9\left(-21\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 12 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 9\left(-21\right)}}{2\times 9}
Square 12.
x=\frac{-12±\sqrt{144-36\left(-21\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-12±\sqrt{144+756}}{2\times 9}
Multiply -36 times -21.
x=\frac{-12±\sqrt{900}}{2\times 9}
Add 144 to 756.
x=\frac{-12±30}{2\times 9}
Take the square root of 900.
x=\frac{-12±30}{18}
Multiply 2 times 9.
x=\frac{18}{18}
Now solve the equation x=\frac{-12±30}{18} when ± is plus. Add -12 to 30.
x=1
Divide 18 by 18.
x=-\frac{42}{18}
Now solve the equation x=\frac{-12±30}{18} when ± is minus. Subtract 30 from -12.
x=-\frac{7}{3}
Reduce the fraction \frac{-42}{18} to lowest terms by extracting and canceling out 6.
x=1 x=-\frac{7}{3}
The equation is now solved.
\left(3x+2\right)^{2}=25
Multiply 3x+2 and 3x+2 to get \left(3x+2\right)^{2}.
9x^{2}+12x+4=25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x=25-4
Subtract 4 from both sides.
9x^{2}+12x=21
Subtract 4 from 25 to get 21.
\frac{9x^{2}+12x}{9}=\frac{21}{9}
Divide both sides by 9.
x^{2}+\frac{12}{9}x=\frac{21}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{4}{3}x=\frac{21}{9}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{4}{3}x=\frac{7}{3}
Reduce the fraction \frac{21}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{7}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{7}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{25}{9}
Add \frac{7}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{5}{3} x+\frac{2}{3}=-\frac{5}{3}
Simplify.
x=1 x=-\frac{7}{3}
Subtract \frac{2}{3} from both sides of the equation.