Evaluate
2.70145
Factor
\frac{97 \cdot 557}{2 ^ {5} \cdot 5 ^ {4}} = 2\frac{14029}{20000} = 2.70145
Share
Copied to clipboard
\frac{\frac{6.65}{10}-1.02}{100}+0.4\times 2.6^{2}+0.1^{3}
Multiply 3.8 and 1.75 to get 6.65.
\frac{\frac{665}{1000}-1.02}{100}+0.4\times 2.6^{2}+0.1^{3}
Expand \frac{6.65}{10} by multiplying both numerator and the denominator by 100.
\frac{\frac{133}{200}-1.02}{100}+0.4\times 2.6^{2}+0.1^{3}
Reduce the fraction \frac{665}{1000} to lowest terms by extracting and canceling out 5.
\frac{\frac{133}{200}-\frac{51}{50}}{100}+0.4\times 2.6^{2}+0.1^{3}
Convert decimal number 1.02 to fraction \frac{102}{100}. Reduce the fraction \frac{102}{100} to lowest terms by extracting and canceling out 2.
\frac{\frac{133}{200}-\frac{204}{200}}{100}+0.4\times 2.6^{2}+0.1^{3}
Least common multiple of 200 and 50 is 200. Convert \frac{133}{200} and \frac{51}{50} to fractions with denominator 200.
\frac{\frac{133-204}{200}}{100}+0.4\times 2.6^{2}+0.1^{3}
Since \frac{133}{200} and \frac{204}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{71}{200}}{100}+0.4\times 2.6^{2}+0.1^{3}
Subtract 204 from 133 to get -71.
\frac{-71}{200\times 100}+0.4\times 2.6^{2}+0.1^{3}
Express \frac{-\frac{71}{200}}{100} as a single fraction.
\frac{-71}{20000}+0.4\times 2.6^{2}+0.1^{3}
Multiply 200 and 100 to get 20000.
-\frac{71}{20000}+0.4\times 2.6^{2}+0.1^{3}
Fraction \frac{-71}{20000} can be rewritten as -\frac{71}{20000} by extracting the negative sign.
-\frac{71}{20000}+0.4\times 6.76+0.1^{3}
Calculate 2.6 to the power of 2 and get 6.76.
-\frac{71}{20000}+2.704+0.1^{3}
Multiply 0.4 and 6.76 to get 2.704.
-\frac{71}{20000}+\frac{338}{125}+0.1^{3}
Convert decimal number 2.704 to fraction \frac{2704}{1000}. Reduce the fraction \frac{2704}{1000} to lowest terms by extracting and canceling out 8.
-\frac{71}{20000}+\frac{54080}{20000}+0.1^{3}
Least common multiple of 20000 and 125 is 20000. Convert -\frac{71}{20000} and \frac{338}{125} to fractions with denominator 20000.
\frac{-71+54080}{20000}+0.1^{3}
Since -\frac{71}{20000} and \frac{54080}{20000} have the same denominator, add them by adding their numerators.
\frac{54009}{20000}+0.1^{3}
Add -71 and 54080 to get 54009.
\frac{54009}{20000}+0.001
Calculate 0.1 to the power of 3 and get 0.001.
\frac{54009}{20000}+\frac{1}{1000}
Convert decimal number 0.001 to fraction \frac{1}{1000}.
\frac{54009}{20000}+\frac{20}{20000}
Least common multiple of 20000 and 1000 is 20000. Convert \frac{54009}{20000} and \frac{1}{1000} to fractions with denominator 20000.
\frac{54009+20}{20000}
Since \frac{54009}{20000} and \frac{20}{20000} have the same denominator, add them by adding their numerators.
\frac{54029}{20000}
Add 54009 and 20 to get 54029.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}