Solve for y
y=-11
Graph
Share
Copied to clipboard
6y^{2}-7y-3+2\left(y-5\right)\left(y+5\right)=2\left(1-2y\right)^{2}+6y
Use the distributive property to multiply 2y-3 by 3y+1 and combine like terms.
6y^{2}-7y-3+\left(2y-10\right)\left(y+5\right)=2\left(1-2y\right)^{2}+6y
Use the distributive property to multiply 2 by y-5.
6y^{2}-7y-3+2y^{2}-50=2\left(1-2y\right)^{2}+6y
Use the distributive property to multiply 2y-10 by y+5 and combine like terms.
8y^{2}-7y-3-50=2\left(1-2y\right)^{2}+6y
Combine 6y^{2} and 2y^{2} to get 8y^{2}.
8y^{2}-7y-53=2\left(1-2y\right)^{2}+6y
Subtract 50 from -3 to get -53.
8y^{2}-7y-53=2\left(1-4y+4y^{2}\right)+6y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2y\right)^{2}.
8y^{2}-7y-53=2-8y+8y^{2}+6y
Use the distributive property to multiply 2 by 1-4y+4y^{2}.
8y^{2}-7y-53=2-2y+8y^{2}
Combine -8y and 6y to get -2y.
8y^{2}-7y-53+2y=2+8y^{2}
Add 2y to both sides.
8y^{2}-5y-53=2+8y^{2}
Combine -7y and 2y to get -5y.
8y^{2}-5y-53-8y^{2}=2
Subtract 8y^{2} from both sides.
-5y-53=2
Combine 8y^{2} and -8y^{2} to get 0.
-5y=2+53
Add 53 to both sides.
-5y=55
Add 2 and 53 to get 55.
y=\frac{55}{-5}
Divide both sides by -5.
y=-11
Divide 55 by -5 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}