Solve for x
x=9
Graph
Share
Copied to clipboard
2x+5=0.5\left(5x+1\right)
Variable x cannot be equal to -\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by 5x+1.
2x+5=2.5x+0.5
Use the distributive property to multiply 0.5 by 5x+1.
2x+5-2.5x=0.5
Subtract 2.5x from both sides.
-0.5x+5=0.5
Combine 2x and -2.5x to get -0.5x.
-0.5x=0.5-5
Subtract 5 from both sides.
-0.5x=-4.5
Subtract 5 from 0.5 to get -4.5.
x=\frac{-4.5}{-0.5}
Divide both sides by -0.5.
x=\frac{-45}{-5}
Expand \frac{-4.5}{-0.5} by multiplying both numerator and the denominator by 10.
x=9
Divide -45 by -5 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}