Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+3-2x\left(2x-1\right)+x=29
Add x to both sides.
2x+3-2x\left(2x-1\right)+x-29=0
Subtract 29 from both sides.
2x+3-4x^{2}+2x+x-29=0
Use the distributive property to multiply -2x by 2x-1.
4x+3-4x^{2}+x-29=0
Combine 2x and 2x to get 4x.
5x+3-4x^{2}-29=0
Combine 4x and x to get 5x.
5x-26-4x^{2}=0
Subtract 29 from 3 to get -26.
-4x^{2}+5x-26=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\left(-26\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 5 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-4\right)\left(-26\right)}}{2\left(-4\right)}
Square 5.
x=\frac{-5±\sqrt{25+16\left(-26\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-5±\sqrt{25-416}}{2\left(-4\right)}
Multiply 16 times -26.
x=\frac{-5±\sqrt{-391}}{2\left(-4\right)}
Add 25 to -416.
x=\frac{-5±\sqrt{391}i}{2\left(-4\right)}
Take the square root of -391.
x=\frac{-5±\sqrt{391}i}{-8}
Multiply 2 times -4.
x=\frac{-5+\sqrt{391}i}{-8}
Now solve the equation x=\frac{-5±\sqrt{391}i}{-8} when ± is plus. Add -5 to i\sqrt{391}.
x=\frac{-\sqrt{391}i+5}{8}
Divide -5+i\sqrt{391} by -8.
x=\frac{-\sqrt{391}i-5}{-8}
Now solve the equation x=\frac{-5±\sqrt{391}i}{-8} when ± is minus. Subtract i\sqrt{391} from -5.
x=\frac{5+\sqrt{391}i}{8}
Divide -5-i\sqrt{391} by -8.
x=\frac{-\sqrt{391}i+5}{8} x=\frac{5+\sqrt{391}i}{8}
The equation is now solved.
2x+3-2x\left(2x-1\right)+x=29
Add x to both sides.
2x+3-4x^{2}+2x+x=29
Use the distributive property to multiply -2x by 2x-1.
4x+3-4x^{2}+x=29
Combine 2x and 2x to get 4x.
5x+3-4x^{2}=29
Combine 4x and x to get 5x.
5x-4x^{2}=29-3
Subtract 3 from both sides.
5x-4x^{2}=26
Subtract 3 from 29 to get 26.
-4x^{2}+5x=26
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+5x}{-4}=\frac{26}{-4}
Divide both sides by -4.
x^{2}+\frac{5}{-4}x=\frac{26}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{5}{4}x=\frac{26}{-4}
Divide 5 by -4.
x^{2}-\frac{5}{4}x=-\frac{13}{2}
Reduce the fraction \frac{26}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-\frac{13}{2}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{13}{2}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{391}{64}
Add -\frac{13}{2} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{8}\right)^{2}=-\frac{391}{64}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{391}{64}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{\sqrt{391}i}{8} x-\frac{5}{8}=-\frac{\sqrt{391}i}{8}
Simplify.
x=\frac{5+\sqrt{391}i}{8} x=\frac{-\sqrt{391}i+5}{8}
Add \frac{5}{8} to both sides of the equation.