Solve for x
x=\frac{366-3z-4y}{5}
Solve for y
y=-\frac{3z}{4}-\frac{5x}{4}+\frac{183}{2}
Share
Copied to clipboard
5x+12-18+3z+4y=360
Combine 2x and 3x to get 5x.
5x-6+3z+4y=360
Subtract 18 from 12 to get -6.
5x+3z+4y=360+6
Add 6 to both sides.
5x+3z+4y=366
Add 360 and 6 to get 366.
5x+4y=366-3z
Subtract 3z from both sides.
5x=366-3z-4y
Subtract 4y from both sides.
\frac{5x}{5}=\frac{366-3z-4y}{5}
Divide both sides by 5.
x=\frac{366-3z-4y}{5}
Dividing by 5 undoes the multiplication by 5.
5x+12-18+3z+4y=360
Combine 2x and 3x to get 5x.
5x-6+3z+4y=360
Subtract 18 from 12 to get -6.
-6+3z+4y=360-5x
Subtract 5x from both sides.
3z+4y=360-5x+6
Add 6 to both sides.
3z+4y=366-5x
Add 360 and 6 to get 366.
4y=366-5x-3z
Subtract 3z from both sides.
4y=366-3z-5x
The equation is in standard form.
\frac{4y}{4}=\frac{366-3z-5x}{4}
Divide both sides by 4.
y=\frac{366-3z-5x}{4}
Dividing by 4 undoes the multiplication by 4.
y=-\frac{3z}{4}-\frac{5x}{4}+\frac{183}{2}
Divide 366-5x-3z by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}