Evaluate
\frac{3\left(x-5\right)\left(8x+3\right)}{20}
Expand
\frac{6x^{2}}{5}-\frac{111x}{20}-\frac{9}{4}
Graph
Share
Copied to clipboard
\left(2x+\frac{3}{4}\right)\left(\frac{3}{5}x-3\right)
Divide 9 by 3 to get 3.
2x\times \frac{3}{5}x-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Apply the distributive property by multiplying each term of 2x+\frac{3}{4} by each term of \frac{3}{5}x-3.
2x^{2}\times \frac{3}{5}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-6x+\frac{3\times 3}{4\times 5}x+\frac{3}{4}\left(-3\right)
Multiply \frac{3}{4} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}x^{2}-6x+\frac{9}{20}x+\frac{3}{4}\left(-3\right)
Do the multiplications in the fraction \frac{3\times 3}{4\times 5}.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{3}{4}\left(-3\right)
Combine -6x and \frac{9}{20}x to get -\frac{111}{20}x.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{3\left(-3\right)}{4}
Express \frac{3}{4}\left(-3\right) as a single fraction.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{-9}{4}
Multiply 3 and -3 to get -9.
\frac{6}{5}x^{2}-\frac{111}{20}x-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
\left(2x+\frac{3}{4}\right)\left(\frac{3}{5}x-3\right)
Divide 9 by 3 to get 3.
2x\times \frac{3}{5}x-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Apply the distributive property by multiplying each term of 2x+\frac{3}{4} by each term of \frac{3}{5}x-3.
2x^{2}\times \frac{3}{5}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-6x+\frac{3}{4}\times \frac{3}{5}x+\frac{3}{4}\left(-3\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-6x+\frac{3\times 3}{4\times 5}x+\frac{3}{4}\left(-3\right)
Multiply \frac{3}{4} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}x^{2}-6x+\frac{9}{20}x+\frac{3}{4}\left(-3\right)
Do the multiplications in the fraction \frac{3\times 3}{4\times 5}.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{3}{4}\left(-3\right)
Combine -6x and \frac{9}{20}x to get -\frac{111}{20}x.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{3\left(-3\right)}{4}
Express \frac{3}{4}\left(-3\right) as a single fraction.
\frac{6}{5}x^{2}-\frac{111}{20}x+\frac{-9}{4}
Multiply 3 and -3 to get -9.
\frac{6}{5}x^{2}-\frac{111}{20}x-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}