Solve for x
x=60
x=80
Graph
Share
Copied to clipboard
\left(480-2x\right)\left(x-20\right)=240x
Use the distributive property to multiply 240-x by 2.
520x-9600-2x^{2}=240x
Use the distributive property to multiply 480-2x by x-20 and combine like terms.
520x-9600-2x^{2}-240x=0
Subtract 240x from both sides.
280x-9600-2x^{2}=0
Combine 520x and -240x to get 280x.
-2x^{2}+280x-9600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-280±\sqrt{280^{2}-4\left(-2\right)\left(-9600\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 280 for b, and -9600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-280±\sqrt{78400-4\left(-2\right)\left(-9600\right)}}{2\left(-2\right)}
Square 280.
x=\frac{-280±\sqrt{78400+8\left(-9600\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-280±\sqrt{78400-76800}}{2\left(-2\right)}
Multiply 8 times -9600.
x=\frac{-280±\sqrt{1600}}{2\left(-2\right)}
Add 78400 to -76800.
x=\frac{-280±40}{2\left(-2\right)}
Take the square root of 1600.
x=\frac{-280±40}{-4}
Multiply 2 times -2.
x=-\frac{240}{-4}
Now solve the equation x=\frac{-280±40}{-4} when ± is plus. Add -280 to 40.
x=60
Divide -240 by -4.
x=-\frac{320}{-4}
Now solve the equation x=\frac{-280±40}{-4} when ± is minus. Subtract 40 from -280.
x=80
Divide -320 by -4.
x=60 x=80
The equation is now solved.
\left(480-2x\right)\left(x-20\right)=240x
Use the distributive property to multiply 240-x by 2.
520x-9600-2x^{2}=240x
Use the distributive property to multiply 480-2x by x-20 and combine like terms.
520x-9600-2x^{2}-240x=0
Subtract 240x from both sides.
280x-9600-2x^{2}=0
Combine 520x and -240x to get 280x.
280x-2x^{2}=9600
Add 9600 to both sides. Anything plus zero gives itself.
-2x^{2}+280x=9600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+280x}{-2}=\frac{9600}{-2}
Divide both sides by -2.
x^{2}+\frac{280}{-2}x=\frac{9600}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-140x=\frac{9600}{-2}
Divide 280 by -2.
x^{2}-140x=-4800
Divide 9600 by -2.
x^{2}-140x+\left(-70\right)^{2}=-4800+\left(-70\right)^{2}
Divide -140, the coefficient of the x term, by 2 to get -70. Then add the square of -70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-140x+4900=-4800+4900
Square -70.
x^{2}-140x+4900=100
Add -4800 to 4900.
\left(x-70\right)^{2}=100
Factor x^{2}-140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-70\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-70=10 x-70=-10
Simplify.
x=80 x=60
Add 70 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}