Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(21-8\sqrt{5}\right)\left(4+\sqrt{5}\right)}{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}
Rationalize the denominator of \frac{21-8\sqrt{5}}{4-\sqrt{5}} by multiplying numerator and denominator by 4+\sqrt{5}.
\frac{\left(21-8\sqrt{5}\right)\left(4+\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(21-8\sqrt{5}\right)\left(4+\sqrt{5}\right)}{16-5}
Square 4. Square \sqrt{5}.
\frac{\left(21-8\sqrt{5}\right)\left(4+\sqrt{5}\right)}{11}
Subtract 5 from 16 to get 11.
\frac{84+21\sqrt{5}-32\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{11}
Apply the distributive property by multiplying each term of 21-8\sqrt{5} by each term of 4+\sqrt{5}.
\frac{84-11\sqrt{5}-8\left(\sqrt{5}\right)^{2}}{11}
Combine 21\sqrt{5} and -32\sqrt{5} to get -11\sqrt{5}.
\frac{84-11\sqrt{5}-8\times 5}{11}
The square of \sqrt{5} is 5.
\frac{84-11\sqrt{5}-40}{11}
Multiply -8 and 5 to get -40.
\frac{44-11\sqrt{5}}{11}
Subtract 40 from 84 to get 44.
4-\sqrt{5}
Divide each term of 44-11\sqrt{5} by 11 to get 4-\sqrt{5}.