Solve for x
x=0.1
x=1.4
Graph
Share
Copied to clipboard
\left(2000-2000x\right)\times 0.65\left(1-2x\right)=936
Multiply 5 and 0.13 to get 0.65.
\left(1300-1300x\right)\left(1-2x\right)=936
Use the distributive property to multiply 2000-2000x by 0.65.
1300-3900x+2600x^{2}=936
Use the distributive property to multiply 1300-1300x by 1-2x and combine like terms.
1300-3900x+2600x^{2}-936=0
Subtract 936 from both sides.
364-3900x+2600x^{2}=0
Subtract 936 from 1300 to get 364.
2600x^{2}-3900x+364=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3900\right)±\sqrt{\left(-3900\right)^{2}-4\times 2600\times 364}}{2\times 2600}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2600 for a, -3900 for b, and 364 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3900\right)±\sqrt{15210000-4\times 2600\times 364}}{2\times 2600}
Square -3900.
x=\frac{-\left(-3900\right)±\sqrt{15210000-10400\times 364}}{2\times 2600}
Multiply -4 times 2600.
x=\frac{-\left(-3900\right)±\sqrt{15210000-3785600}}{2\times 2600}
Multiply -10400 times 364.
x=\frac{-\left(-3900\right)±\sqrt{11424400}}{2\times 2600}
Add 15210000 to -3785600.
x=\frac{-\left(-3900\right)±3380}{2\times 2600}
Take the square root of 11424400.
x=\frac{3900±3380}{2\times 2600}
The opposite of -3900 is 3900.
x=\frac{3900±3380}{5200}
Multiply 2 times 2600.
x=\frac{7280}{5200}
Now solve the equation x=\frac{3900±3380}{5200} when ± is plus. Add 3900 to 3380.
x=\frac{7}{5}
Reduce the fraction \frac{7280}{5200} to lowest terms by extracting and canceling out 1040.
x=\frac{520}{5200}
Now solve the equation x=\frac{3900±3380}{5200} when ± is minus. Subtract 3380 from 3900.
x=\frac{1}{10}
Reduce the fraction \frac{520}{5200} to lowest terms by extracting and canceling out 520.
x=\frac{7}{5} x=\frac{1}{10}
The equation is now solved.
\left(2000-2000x\right)\times 0.65\left(1-2x\right)=936
Multiply 5 and 0.13 to get 0.65.
\left(1300-1300x\right)\left(1-2x\right)=936
Use the distributive property to multiply 2000-2000x by 0.65.
1300-3900x+2600x^{2}=936
Use the distributive property to multiply 1300-1300x by 1-2x and combine like terms.
-3900x+2600x^{2}=936-1300
Subtract 1300 from both sides.
-3900x+2600x^{2}=-364
Subtract 1300 from 936 to get -364.
2600x^{2}-3900x=-364
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2600x^{2}-3900x}{2600}=-\frac{364}{2600}
Divide both sides by 2600.
x^{2}+\left(-\frac{3900}{2600}\right)x=-\frac{364}{2600}
Dividing by 2600 undoes the multiplication by 2600.
x^{2}-\frac{3}{2}x=-\frac{364}{2600}
Reduce the fraction \frac{-3900}{2600} to lowest terms by extracting and canceling out 1300.
x^{2}-\frac{3}{2}x=-\frac{7}{50}
Reduce the fraction \frac{-364}{2600} to lowest terms by extracting and canceling out 52.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{7}{50}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{50}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{169}{400}
Add -\frac{7}{50} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{169}{400}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{169}{400}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{13}{20} x-\frac{3}{4}=-\frac{13}{20}
Simplify.
x=\frac{7}{5} x=\frac{1}{10}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}