Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(200-4x\right)\left(100-3x\right)+4x^{2}\times 3=7700
Multiply x and x to get x^{2}.
20000-1000x+12x^{2}+4x^{2}\times 3=7700
Use the distributive property to multiply 200-4x by 100-3x and combine like terms.
20000-1000x+12x^{2}+12x^{2}=7700
Multiply 4 and 3 to get 12.
20000-1000x+24x^{2}=7700
Combine 12x^{2} and 12x^{2} to get 24x^{2}.
20000-1000x+24x^{2}-7700=0
Subtract 7700 from both sides.
12300-1000x+24x^{2}=0
Subtract 7700 from 20000 to get 12300.
24x^{2}-1000x+12300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1000\right)±\sqrt{\left(-1000\right)^{2}-4\times 24\times 12300}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, -1000 for b, and 12300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1000\right)±\sqrt{1000000-4\times 24\times 12300}}{2\times 24}
Square -1000.
x=\frac{-\left(-1000\right)±\sqrt{1000000-96\times 12300}}{2\times 24}
Multiply -4 times 24.
x=\frac{-\left(-1000\right)±\sqrt{1000000-1180800}}{2\times 24}
Multiply -96 times 12300.
x=\frac{-\left(-1000\right)±\sqrt{-180800}}{2\times 24}
Add 1000000 to -1180800.
x=\frac{-\left(-1000\right)±40\sqrt{113}i}{2\times 24}
Take the square root of -180800.
x=\frac{1000±40\sqrt{113}i}{2\times 24}
The opposite of -1000 is 1000.
x=\frac{1000±40\sqrt{113}i}{48}
Multiply 2 times 24.
x=\frac{1000+40\sqrt{113}i}{48}
Now solve the equation x=\frac{1000±40\sqrt{113}i}{48} when ± is plus. Add 1000 to 40i\sqrt{113}.
x=\frac{125+5\sqrt{113}i}{6}
Divide 1000+40i\sqrt{113} by 48.
x=\frac{-40\sqrt{113}i+1000}{48}
Now solve the equation x=\frac{1000±40\sqrt{113}i}{48} when ± is minus. Subtract 40i\sqrt{113} from 1000.
x=\frac{-5\sqrt{113}i+125}{6}
Divide 1000-40i\sqrt{113} by 48.
x=\frac{125+5\sqrt{113}i}{6} x=\frac{-5\sqrt{113}i+125}{6}
The equation is now solved.
\left(200-4x\right)\left(100-3x\right)+4x^{2}\times 3=7700
Multiply x and x to get x^{2}.
20000-1000x+12x^{2}+4x^{2}\times 3=7700
Use the distributive property to multiply 200-4x by 100-3x and combine like terms.
20000-1000x+12x^{2}+12x^{2}=7700
Multiply 4 and 3 to get 12.
20000-1000x+24x^{2}=7700
Combine 12x^{2} and 12x^{2} to get 24x^{2}.
-1000x+24x^{2}=7700-20000
Subtract 20000 from both sides.
-1000x+24x^{2}=-12300
Subtract 20000 from 7700 to get -12300.
24x^{2}-1000x=-12300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{24x^{2}-1000x}{24}=-\frac{12300}{24}
Divide both sides by 24.
x^{2}+\left(-\frac{1000}{24}\right)x=-\frac{12300}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}-\frac{125}{3}x=-\frac{12300}{24}
Reduce the fraction \frac{-1000}{24} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{125}{3}x=-\frac{1025}{2}
Reduce the fraction \frac{-12300}{24} to lowest terms by extracting and canceling out 12.
x^{2}-\frac{125}{3}x+\left(-\frac{125}{6}\right)^{2}=-\frac{1025}{2}+\left(-\frac{125}{6}\right)^{2}
Divide -\frac{125}{3}, the coefficient of the x term, by 2 to get -\frac{125}{6}. Then add the square of -\frac{125}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{125}{3}x+\frac{15625}{36}=-\frac{1025}{2}+\frac{15625}{36}
Square -\frac{125}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{125}{3}x+\frac{15625}{36}=-\frac{2825}{36}
Add -\frac{1025}{2} to \frac{15625}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{125}{6}\right)^{2}=-\frac{2825}{36}
Factor x^{2}-\frac{125}{3}x+\frac{15625}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{6}\right)^{2}}=\sqrt{-\frac{2825}{36}}
Take the square root of both sides of the equation.
x-\frac{125}{6}=\frac{5\sqrt{113}i}{6} x-\frac{125}{6}=-\frac{5\sqrt{113}i}{6}
Simplify.
x=\frac{125+5\sqrt{113}i}{6} x=\frac{-5\sqrt{113}i+125}{6}
Add \frac{125}{6} to both sides of the equation.