Solve for x
x = \frac{\sqrt{177} + 15}{2} \approx 14.152067348
x=\frac{15-\sqrt{177}}{2}\approx 0.847932652
Graph
Share
Copied to clipboard
2000+300x-20x^{2}=2240
Use the distributive property to multiply 20-x by 100+20x and combine like terms.
2000+300x-20x^{2}-2240=0
Subtract 2240 from both sides.
-240+300x-20x^{2}=0
Subtract 2240 from 2000 to get -240.
-20x^{2}+300x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-300±\sqrt{300^{2}-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 300 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-20\right)\left(-240\right)}}{2\left(-20\right)}
Square 300.
x=\frac{-300±\sqrt{90000+80\left(-240\right)}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-300±\sqrt{90000-19200}}{2\left(-20\right)}
Multiply 80 times -240.
x=\frac{-300±\sqrt{70800}}{2\left(-20\right)}
Add 90000 to -19200.
x=\frac{-300±20\sqrt{177}}{2\left(-20\right)}
Take the square root of 70800.
x=\frac{-300±20\sqrt{177}}{-40}
Multiply 2 times -20.
x=\frac{20\sqrt{177}-300}{-40}
Now solve the equation x=\frac{-300±20\sqrt{177}}{-40} when ± is plus. Add -300 to 20\sqrt{177}.
x=\frac{15-\sqrt{177}}{2}
Divide -300+20\sqrt{177} by -40.
x=\frac{-20\sqrt{177}-300}{-40}
Now solve the equation x=\frac{-300±20\sqrt{177}}{-40} when ± is minus. Subtract 20\sqrt{177} from -300.
x=\frac{\sqrt{177}+15}{2}
Divide -300-20\sqrt{177} by -40.
x=\frac{15-\sqrt{177}}{2} x=\frac{\sqrt{177}+15}{2}
The equation is now solved.
2000+300x-20x^{2}=2240
Use the distributive property to multiply 20-x by 100+20x and combine like terms.
300x-20x^{2}=2240-2000
Subtract 2000 from both sides.
300x-20x^{2}=240
Subtract 2000 from 2240 to get 240.
-20x^{2}+300x=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+300x}{-20}=\frac{240}{-20}
Divide both sides by -20.
x^{2}+\frac{300}{-20}x=\frac{240}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-15x=\frac{240}{-20}
Divide 300 by -20.
x^{2}-15x=-12
Divide 240 by -20.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-12+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-12+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{177}{4}
Add -12 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{177}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{177}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{\sqrt{177}}{2} x-\frac{15}{2}=-\frac{\sqrt{177}}{2}
Simplify.
x=\frac{\sqrt{177}+15}{2} x=\frac{15-\sqrt{177}}{2}
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}