Solve for x
x=2
x = \frac{26}{3} = 8\frac{2}{3} \approx 8.666666667
Graph
Share
Copied to clipboard
160-64x+6x^{2}=56
Use the distributive property to multiply 20-3x by 8-2x and combine like terms.
160-64x+6x^{2}-56=0
Subtract 56 from both sides.
104-64x+6x^{2}=0
Subtract 56 from 160 to get 104.
6x^{2}-64x+104=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 6\times 104}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -64 for b, and 104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 6\times 104}}{2\times 6}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-24\times 104}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-64\right)±\sqrt{4096-2496}}{2\times 6}
Multiply -24 times 104.
x=\frac{-\left(-64\right)±\sqrt{1600}}{2\times 6}
Add 4096 to -2496.
x=\frac{-\left(-64\right)±40}{2\times 6}
Take the square root of 1600.
x=\frac{64±40}{2\times 6}
The opposite of -64 is 64.
x=\frac{64±40}{12}
Multiply 2 times 6.
x=\frac{104}{12}
Now solve the equation x=\frac{64±40}{12} when ± is plus. Add 64 to 40.
x=\frac{26}{3}
Reduce the fraction \frac{104}{12} to lowest terms by extracting and canceling out 4.
x=\frac{24}{12}
Now solve the equation x=\frac{64±40}{12} when ± is minus. Subtract 40 from 64.
x=2
Divide 24 by 12.
x=\frac{26}{3} x=2
The equation is now solved.
160-64x+6x^{2}=56
Use the distributive property to multiply 20-3x by 8-2x and combine like terms.
-64x+6x^{2}=56-160
Subtract 160 from both sides.
-64x+6x^{2}=-104
Subtract 160 from 56 to get -104.
6x^{2}-64x=-104
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-64x}{6}=-\frac{104}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{64}{6}\right)x=-\frac{104}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{32}{3}x=-\frac{104}{6}
Reduce the fraction \frac{-64}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{32}{3}x=-\frac{52}{3}
Reduce the fraction \frac{-104}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{32}{3}x+\left(-\frac{16}{3}\right)^{2}=-\frac{52}{3}+\left(-\frac{16}{3}\right)^{2}
Divide -\frac{32}{3}, the coefficient of the x term, by 2 to get -\frac{16}{3}. Then add the square of -\frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{3}x+\frac{256}{9}=-\frac{52}{3}+\frac{256}{9}
Square -\frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{3}x+\frac{256}{9}=\frac{100}{9}
Add -\frac{52}{3} to \frac{256}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}-\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x-\frac{16}{3}=\frac{10}{3} x-\frac{16}{3}=-\frac{10}{3}
Simplify.
x=\frac{26}{3} x=2
Add \frac{16}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}