Solve for x
x=2
x=3
Graph
Share
Copied to clipboard
2000+200x-40x^{2}=2240
Use the distributive property to multiply 20-2x by 100+20x and combine like terms.
2000+200x-40x^{2}-2240=0
Subtract 2240 from both sides.
-240+200x-40x^{2}=0
Subtract 2240 from 2000 to get -240.
-40x^{2}+200x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\left(-40\right)\left(-240\right)}}{2\left(-40\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -40 for a, 200 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-40\right)\left(-240\right)}}{2\left(-40\right)}
Square 200.
x=\frac{-200±\sqrt{40000+160\left(-240\right)}}{2\left(-40\right)}
Multiply -4 times -40.
x=\frac{-200±\sqrt{40000-38400}}{2\left(-40\right)}
Multiply 160 times -240.
x=\frac{-200±\sqrt{1600}}{2\left(-40\right)}
Add 40000 to -38400.
x=\frac{-200±40}{2\left(-40\right)}
Take the square root of 1600.
x=\frac{-200±40}{-80}
Multiply 2 times -40.
x=-\frac{160}{-80}
Now solve the equation x=\frac{-200±40}{-80} when ± is plus. Add -200 to 40.
x=2
Divide -160 by -80.
x=-\frac{240}{-80}
Now solve the equation x=\frac{-200±40}{-80} when ± is minus. Subtract 40 from -200.
x=3
Divide -240 by -80.
x=2 x=3
The equation is now solved.
2000+200x-40x^{2}=2240
Use the distributive property to multiply 20-2x by 100+20x and combine like terms.
200x-40x^{2}=2240-2000
Subtract 2000 from both sides.
200x-40x^{2}=240
Subtract 2000 from 2240 to get 240.
-40x^{2}+200x=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-40x^{2}+200x}{-40}=\frac{240}{-40}
Divide both sides by -40.
x^{2}+\frac{200}{-40}x=\frac{240}{-40}
Dividing by -40 undoes the multiplication by -40.
x^{2}-5x=\frac{240}{-40}
Divide 200 by -40.
x^{2}-5x=-6
Divide 240 by -40.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Simplify.
x=3 x=2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}