Evaluate
\left(2x^{2}+1\right)^{3}
Expand
8x^{6}+12x^{4}+6x^{2}+1
Graph
Share
Copied to clipboard
\left(2x^{2}+1\right)^{2}\left(2x^{2}+1\right)
Multiply 2x^{2}+1 and 2x^{2}+1 to get \left(2x^{2}+1\right)^{2}.
\left(2x^{2}+1\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8\left(x^{2}\right)^{3}+12\left(x^{2}\right)^{2}+6x^{2}+1
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2x^{2}+1\right)^{3}.
8x^{6}+12\left(x^{2}\right)^{2}+6x^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8x^{6}+12x^{4}+6x^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(2x^{2}+1\right)^{2}\left(2x^{2}+1\right)
Multiply 2x^{2}+1 and 2x^{2}+1 to get \left(2x^{2}+1\right)^{2}.
\left(2x^{2}+1\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8\left(x^{2}\right)^{3}+12\left(x^{2}\right)^{2}+6x^{2}+1
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2x^{2}+1\right)^{3}.
8x^{6}+12\left(x^{2}\right)^{2}+6x^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8x^{6}+12x^{4}+6x^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}