Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2\left(\frac{8}{8}-\frac{x}{8}\right)+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{8}{8}.
\left(2\times \frac{8-x}{8}+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{8}{8} and \frac{x}{8} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8-x}{4}+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Cancel out 8, the greatest common factor in 2 and 8.
\left(\frac{8-x}{4}+2\left(\frac{24}{24}-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24}{24}.
\left(\frac{8-x}{4}+2\times \frac{24-x}{24}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{24}{24} and \frac{x}{24} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8-x}{4}+\frac{24-x}{12}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Cancel out 24, the greatest common factor in 2 and 24.
\left(\frac{3\left(8-x\right)}{12}+\frac{24-x}{12}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{8-x}{4} times \frac{3}{3}.
\frac{3\left(8-x\right)+24-x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{3\left(8-x\right)}{12} and \frac{24-x}{12} have the same denominator, add them by adding their numerators.
\frac{24-3x+24-x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Do the multiplications in 3\left(8-x\right)+24-x.
\frac{48-4x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Combine like terms in 24-3x+24-x.
\frac{48-4x}{12}\times \frac{1}{2}\left(\frac{24}{24}+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24}{24}.
\frac{48-4x}{12}\times \frac{1}{2}\times \frac{24+x}{24}
Since \frac{24}{24} and \frac{x}{24} have the same denominator, add them by adding their numerators.
\frac{48-4x}{12\times 2}\times \frac{24+x}{24}
Multiply \frac{48-4x}{12} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(48-4x\right)\left(24+x\right)}{12\times 2\times 24}
Multiply \frac{48-4x}{12\times 2} times \frac{24+x}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(48-4x\right)\left(24+x\right)}{24\times 24}
Multiply 12 and 2 to get 24.
\frac{\left(48-4x\right)\left(24+x\right)}{576}
Multiply 24 and 24 to get 576.
\frac{1152+48x-96x-4x^{2}}{576}
Apply the distributive property by multiplying each term of 48-4x by each term of 24+x.
\frac{1152-48x-4x^{2}}{576}
Combine 48x and -96x to get -48x.
\left(2\left(\frac{8}{8}-\frac{x}{8}\right)+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{8}{8}.
\left(2\times \frac{8-x}{8}+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{8}{8} and \frac{x}{8} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8-x}{4}+2\left(1-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Cancel out 8, the greatest common factor in 2 and 8.
\left(\frac{8-x}{4}+2\left(\frac{24}{24}-\frac{x}{24}\right)\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24}{24}.
\left(\frac{8-x}{4}+2\times \frac{24-x}{24}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{24}{24} and \frac{x}{24} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8-x}{4}+\frac{24-x}{12}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Cancel out 24, the greatest common factor in 2 and 24.
\left(\frac{3\left(8-x\right)}{12}+\frac{24-x}{12}\right)\times \frac{1}{2}\left(1+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{8-x}{4} times \frac{3}{3}.
\frac{3\left(8-x\right)+24-x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Since \frac{3\left(8-x\right)}{12} and \frac{24-x}{12} have the same denominator, add them by adding their numerators.
\frac{24-3x+24-x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Do the multiplications in 3\left(8-x\right)+24-x.
\frac{48-4x}{12}\times \frac{1}{2}\left(1+\frac{x}{24}\right)
Combine like terms in 24-3x+24-x.
\frac{48-4x}{12}\times \frac{1}{2}\left(\frac{24}{24}+\frac{x}{24}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{24}{24}.
\frac{48-4x}{12}\times \frac{1}{2}\times \frac{24+x}{24}
Since \frac{24}{24} and \frac{x}{24} have the same denominator, add them by adding their numerators.
\frac{48-4x}{12\times 2}\times \frac{24+x}{24}
Multiply \frac{48-4x}{12} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(48-4x\right)\left(24+x\right)}{12\times 2\times 24}
Multiply \frac{48-4x}{12\times 2} times \frac{24+x}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(48-4x\right)\left(24+x\right)}{24\times 24}
Multiply 12 and 2 to get 24.
\frac{\left(48-4x\right)\left(24+x\right)}{576}
Multiply 24 and 24 to get 576.
\frac{1152+48x-96x-4x^{2}}{576}
Apply the distributive property by multiplying each term of 48-4x by each term of 24+x.
\frac{1152-48x-4x^{2}}{576}
Combine 48x and -96x to get -48x.