Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5760-500x+10x^{2}=400
Use the distributive property to multiply 18-x by 320-10x and combine like terms.
5760-500x+10x^{2}-400=0
Subtract 400 from both sides.
5360-500x+10x^{2}=0
Subtract 400 from 5760 to get 5360.
10x^{2}-500x+5360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-500\right)±\sqrt{\left(-500\right)^{2}-4\times 10\times 5360}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -500 for b, and 5360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-500\right)±\sqrt{250000-4\times 10\times 5360}}{2\times 10}
Square -500.
x=\frac{-\left(-500\right)±\sqrt{250000-40\times 5360}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-500\right)±\sqrt{250000-214400}}{2\times 10}
Multiply -40 times 5360.
x=\frac{-\left(-500\right)±\sqrt{35600}}{2\times 10}
Add 250000 to -214400.
x=\frac{-\left(-500\right)±20\sqrt{89}}{2\times 10}
Take the square root of 35600.
x=\frac{500±20\sqrt{89}}{2\times 10}
The opposite of -500 is 500.
x=\frac{500±20\sqrt{89}}{20}
Multiply 2 times 10.
x=\frac{20\sqrt{89}+500}{20}
Now solve the equation x=\frac{500±20\sqrt{89}}{20} when ± is plus. Add 500 to 20\sqrt{89}.
x=\sqrt{89}+25
Divide 500+20\sqrt{89} by 20.
x=\frac{500-20\sqrt{89}}{20}
Now solve the equation x=\frac{500±20\sqrt{89}}{20} when ± is minus. Subtract 20\sqrt{89} from 500.
x=25-\sqrt{89}
Divide 500-20\sqrt{89} by 20.
x=\sqrt{89}+25 x=25-\sqrt{89}
The equation is now solved.
5760-500x+10x^{2}=400
Use the distributive property to multiply 18-x by 320-10x and combine like terms.
-500x+10x^{2}=400-5760
Subtract 5760 from both sides.
-500x+10x^{2}=-5360
Subtract 5760 from 400 to get -5360.
10x^{2}-500x=-5360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}-500x}{10}=-\frac{5360}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{500}{10}\right)x=-\frac{5360}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-50x=-\frac{5360}{10}
Divide -500 by 10.
x^{2}-50x=-536
Divide -5360 by 10.
x^{2}-50x+\left(-25\right)^{2}=-536+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-50x+625=-536+625
Square -25.
x^{2}-50x+625=89
Add -536 to 625.
\left(x-25\right)^{2}=89
Factor x^{2}-50x+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-25\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
x-25=\sqrt{89} x-25=-\sqrt{89}
Simplify.
x=\sqrt{89}+25 x=25-\sqrt{89}
Add 25 to both sides of the equation.