Evaluate
\frac{\left(150-x\right)\left(x+35\right)}{35}
Expand
-\frac{x^{2}}{35}+\frac{23x}{7}+150
Graph
Share
Copied to clipboard
\left(150-x\right)\left(\frac{35}{35}+\frac{x}{35}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{35}{35}.
\left(150-x\right)\times \frac{35+x}{35}
Since \frac{35}{35} and \frac{x}{35} have the same denominator, add them by adding their numerators.
\frac{\left(150-x\right)\left(35+x\right)}{35}
Express \left(150-x\right)\times \frac{35+x}{35} as a single fraction.
\frac{5250+150x-35x-x^{2}}{35}
Apply the distributive property by multiplying each term of 150-x by each term of 35+x.
\frac{5250+115x-x^{2}}{35}
Combine 150x and -35x to get 115x.
\left(150-x\right)\left(\frac{35}{35}+\frac{x}{35}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{35}{35}.
\left(150-x\right)\times \frac{35+x}{35}
Since \frac{35}{35} and \frac{x}{35} have the same denominator, add them by adding their numerators.
\frac{\left(150-x\right)\left(35+x\right)}{35}
Express \left(150-x\right)\times \frac{35+x}{35} as a single fraction.
\frac{5250+150x-35x-x^{2}}{35}
Apply the distributive property by multiplying each term of 150-x by each term of 35+x.
\frac{5250+115x-x^{2}}{35}
Combine 150x and -35x to get 115x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}