Solve for θ
\theta =\frac{11}{5}=2.2
Graph
Share
Copied to clipboard
4-\theta =\frac{124}{20}-2\theta
Divide 124 by 31 to get 4.
4-\theta =\frac{31}{5}-2\theta
Reduce the fraction \frac{124}{20} to lowest terms by extracting and canceling out 4.
4-\theta +2\theta =\frac{31}{5}
Add 2\theta to both sides.
4+\theta =\frac{31}{5}
Combine -\theta and 2\theta to get \theta .
\theta =\frac{31}{5}-4
Subtract 4 from both sides.
\theta =\frac{31}{5}-\frac{20}{5}
Convert 4 to fraction \frac{20}{5}.
\theta =\frac{31-20}{5}
Since \frac{31}{5} and \frac{20}{5} have the same denominator, subtract them by subtracting their numerators.
\theta =\frac{11}{5}
Subtract 20 from 31 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}