Solve for x
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Share
Copied to clipboard
\left(200+\frac{1200}{18}+\frac{1200}{18}\right)x=1200
Divide 1200 by 6 to get 200.
\left(200+\frac{200}{3}+\frac{1200}{18}\right)x=1200
Reduce the fraction \frac{1200}{18} to lowest terms by extracting and canceling out 6.
\left(\frac{600}{3}+\frac{200}{3}+\frac{1200}{18}\right)x=1200
Convert 200 to fraction \frac{600}{3}.
\left(\frac{600+200}{3}+\frac{1200}{18}\right)x=1200
Since \frac{600}{3} and \frac{200}{3} have the same denominator, add them by adding their numerators.
\left(\frac{800}{3}+\frac{1200}{18}\right)x=1200
Add 600 and 200 to get 800.
\left(\frac{800}{3}+\frac{200}{3}\right)x=1200
Reduce the fraction \frac{1200}{18} to lowest terms by extracting and canceling out 6.
\frac{800+200}{3}x=1200
Since \frac{800}{3} and \frac{200}{3} have the same denominator, add them by adding their numerators.
\frac{1000}{3}x=1200
Add 800 and 200 to get 1000.
x=1200\times \frac{3}{1000}
Multiply both sides by \frac{3}{1000}, the reciprocal of \frac{1000}{3}.
x=\frac{1200\times 3}{1000}
Express 1200\times \frac{3}{1000} as a single fraction.
x=\frac{3600}{1000}
Multiply 1200 and 3 to get 3600.
x=\frac{18}{5}
Reduce the fraction \frac{3600}{1000} to lowest terms by extracting and canceling out 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}