Solve for x (complex solution)
x=-3\sqrt{166}i-4\approx -4-38.65229618i
x=-4+3\sqrt{166}i\approx -4+38.65229618i
Graph
Share
Copied to clipboard
240-8x-x^{2}=1750
Use the distributive property to multiply 12-x by 20+x and combine like terms.
240-8x-x^{2}-1750=0
Subtract 1750 from both sides.
-1510-8x-x^{2}=0
Subtract 1750 from 240 to get -1510.
-x^{2}-8x-1510=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -8 for b, and -1510 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\left(-1510\right)}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\left(-1510\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64-6040}}{2\left(-1\right)}
Multiply 4 times -1510.
x=\frac{-\left(-8\right)±\sqrt{-5976}}{2\left(-1\right)}
Add 64 to -6040.
x=\frac{-\left(-8\right)±6\sqrt{166}i}{2\left(-1\right)}
Take the square root of -5976.
x=\frac{8±6\sqrt{166}i}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±6\sqrt{166}i}{-2}
Multiply 2 times -1.
x=\frac{8+6\sqrt{166}i}{-2}
Now solve the equation x=\frac{8±6\sqrt{166}i}{-2} when ± is plus. Add 8 to 6i\sqrt{166}.
x=-3\sqrt{166}i-4
Divide 8+6i\sqrt{166} by -2.
x=\frac{-6\sqrt{166}i+8}{-2}
Now solve the equation x=\frac{8±6\sqrt{166}i}{-2} when ± is minus. Subtract 6i\sqrt{166} from 8.
x=-4+3\sqrt{166}i
Divide 8-6i\sqrt{166} by -2.
x=-3\sqrt{166}i-4 x=-4+3\sqrt{166}i
The equation is now solved.
240-8x-x^{2}=1750
Use the distributive property to multiply 12-x by 20+x and combine like terms.
-8x-x^{2}=1750-240
Subtract 240 from both sides.
-8x-x^{2}=1510
Subtract 240 from 1750 to get 1510.
-x^{2}-8x=1510
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=\frac{1510}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{8}{-1}\right)x=\frac{1510}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+8x=\frac{1510}{-1}
Divide -8 by -1.
x^{2}+8x=-1510
Divide 1510 by -1.
x^{2}+8x+4^{2}=-1510+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-1510+16
Square 4.
x^{2}+8x+16=-1494
Add -1510 to 16.
\left(x+4\right)^{2}=-1494
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1494}
Take the square root of both sides of the equation.
x+4=3\sqrt{166}i x+4=-3\sqrt{166}i
Simplify.
x=-4+3\sqrt{166}i x=-3\sqrt{166}i-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}