Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

121x^{2}+484x+160=1612
Use the distributive property to multiply 11x+4 by 11x+40 and combine like terms.
121x^{2}+484x+160-1612=0
Subtract 1612 from both sides.
121x^{2}+484x-1452=0
Subtract 1612 from 160 to get -1452.
x=\frac{-484±\sqrt{484^{2}-4\times 121\left(-1452\right)}}{2\times 121}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 121 for a, 484 for b, and -1452 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-484±\sqrt{234256-4\times 121\left(-1452\right)}}{2\times 121}
Square 484.
x=\frac{-484±\sqrt{234256-484\left(-1452\right)}}{2\times 121}
Multiply -4 times 121.
x=\frac{-484±\sqrt{234256+702768}}{2\times 121}
Multiply -484 times -1452.
x=\frac{-484±\sqrt{937024}}{2\times 121}
Add 234256 to 702768.
x=\frac{-484±968}{2\times 121}
Take the square root of 937024.
x=\frac{-484±968}{242}
Multiply 2 times 121.
x=\frac{484}{242}
Now solve the equation x=\frac{-484±968}{242} when ± is plus. Add -484 to 968.
x=2
Divide 484 by 242.
x=-\frac{1452}{242}
Now solve the equation x=\frac{-484±968}{242} when ± is minus. Subtract 968 from -484.
x=-6
Divide -1452 by 242.
x=2 x=-6
The equation is now solved.
121x^{2}+484x+160=1612
Use the distributive property to multiply 11x+4 by 11x+40 and combine like terms.
121x^{2}+484x=1612-160
Subtract 160 from both sides.
121x^{2}+484x=1452
Subtract 160 from 1612 to get 1452.
\frac{121x^{2}+484x}{121}=\frac{1452}{121}
Divide both sides by 121.
x^{2}+\frac{484}{121}x=\frac{1452}{121}
Dividing by 121 undoes the multiplication by 121.
x^{2}+4x=\frac{1452}{121}
Divide 484 by 121.
x^{2}+4x=12
Divide 1452 by 121.
x^{2}+4x+2^{2}=12+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=12+4
Square 2.
x^{2}+4x+4=16
Add 12 to 4.
\left(x+2\right)^{2}=16
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x+2=4 x+2=-4
Simplify.
x=2 x=-6
Subtract 2 from both sides of the equation.