Solve for x
x=30
x=40
Graph
Share
Copied to clipboard
3000+70x-x^{2}=4200
Use the distributive property to multiply 100-x by 30+x and combine like terms.
3000+70x-x^{2}-4200=0
Subtract 4200 from both sides.
-1200+70x-x^{2}=0
Subtract 4200 from 3000 to get -1200.
-x^{2}+70x-1200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\left(-1\right)\left(-1200\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 70 for b, and -1200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\left(-1\right)\left(-1200\right)}}{2\left(-1\right)}
Square 70.
x=\frac{-70±\sqrt{4900+4\left(-1200\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-70±\sqrt{4900-4800}}{2\left(-1\right)}
Multiply 4 times -1200.
x=\frac{-70±\sqrt{100}}{2\left(-1\right)}
Add 4900 to -4800.
x=\frac{-70±10}{2\left(-1\right)}
Take the square root of 100.
x=\frac{-70±10}{-2}
Multiply 2 times -1.
x=-\frac{60}{-2}
Now solve the equation x=\frac{-70±10}{-2} when ± is plus. Add -70 to 10.
x=30
Divide -60 by -2.
x=-\frac{80}{-2}
Now solve the equation x=\frac{-70±10}{-2} when ± is minus. Subtract 10 from -70.
x=40
Divide -80 by -2.
x=30 x=40
The equation is now solved.
3000+70x-x^{2}=4200
Use the distributive property to multiply 100-x by 30+x and combine like terms.
70x-x^{2}=4200-3000
Subtract 3000 from both sides.
70x-x^{2}=1200
Subtract 3000 from 4200 to get 1200.
-x^{2}+70x=1200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+70x}{-1}=\frac{1200}{-1}
Divide both sides by -1.
x^{2}+\frac{70}{-1}x=\frac{1200}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-70x=\frac{1200}{-1}
Divide 70 by -1.
x^{2}-70x=-1200
Divide 1200 by -1.
x^{2}-70x+\left(-35\right)^{2}=-1200+\left(-35\right)^{2}
Divide -70, the coefficient of the x term, by 2 to get -35. Then add the square of -35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-70x+1225=-1200+1225
Square -35.
x^{2}-70x+1225=25
Add -1200 to 1225.
\left(x-35\right)^{2}=25
Factor x^{2}-70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-35=5 x-35=-5
Simplify.
x=40 x=30
Add 35 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}