Solve for x
x = -\frac{2100}{29} = -72\frac{12}{29} \approx -72.413793103
Graph
Share
Copied to clipboard
50\left(100-\frac{x-300}{50}\right)\left(3000-150\right)-\left(x-300\right)\times 50=15330000
Multiply both sides of the equation by 50.
50\left(100-\frac{x-300}{50}\right)\times 2850-\left(x-300\right)\times 50=15330000
Subtract 150 from 3000 to get 2850.
142500\left(100-\frac{x-300}{50}\right)-\left(x-300\right)\times 50=15330000
Multiply 50 and 2850 to get 142500.
14250000+142500\left(-\frac{x-300}{50}\right)-\left(x-300\right)\times 50=15330000
Use the distributive property to multiply 142500 by 100-\frac{x-300}{50}.
14250000-2850\left(x-300\right)-\left(x-300\right)\times 50=15330000
Cancel out 50, the greatest common factor in 142500 and 50.
14250000-2850x+855000-\left(x-300\right)\times 50=15330000
Use the distributive property to multiply -2850 by x-300.
15105000-2850x-\left(x-300\right)\times 50=15330000
Add 14250000 and 855000 to get 15105000.
15105000-2850x-\left(50x-15000\right)=15330000
Use the distributive property to multiply x-300 by 50.
15105000-2850x-50x-\left(-15000\right)=15330000
To find the opposite of 50x-15000, find the opposite of each term.
15105000-2850x-50x+15000=15330000
The opposite of -15000 is 15000.
15105000-2900x+15000=15330000
Combine -2850x and -50x to get -2900x.
15120000-2900x=15330000
Add 15105000 and 15000 to get 15120000.
-2900x=15330000-15120000
Subtract 15120000 from both sides.
-2900x=210000
Subtract 15120000 from 15330000 to get 210000.
x=\frac{210000}{-2900}
Divide both sides by -2900.
x=-\frac{2100}{29}
Reduce the fraction \frac{210000}{-2900} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}