Solve for x
x=900
x=1200
Graph
Share
Copied to clipboard
50\left(100-\frac{x}{50}\right)\left(3000+x-150\right)-x\times 50=15330000
Multiply both sides of the equation by 50.
50\left(100-\frac{x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Subtract 150 from 3000 to get 2850.
\left(5000+50\left(-\frac{x}{50}\right)\right)\left(2850+x\right)-x\times 50=15330000
Use the distributive property to multiply 50 by 100-\frac{x}{50}.
\left(5000+\frac{-50x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Express 50\left(-\frac{x}{50}\right) as a single fraction.
\left(5000-x\right)\left(2850+x\right)-x\times 50=15330000
Cancel out 50 and 50.
14250000+5000x-2850x-x^{2}-x\times 50=15330000
Apply the distributive property by multiplying each term of 5000-x by each term of 2850+x.
14250000+2150x-x^{2}-x\times 50=15330000
Combine 5000x and -2850x to get 2150x.
14250000+2100x-x^{2}=15330000
Combine 2150x and -x\times 50 to get 2100x.
14250000+2100x-x^{2}-15330000=0
Subtract 15330000 from both sides.
-1080000+2100x-x^{2}=0
Subtract 15330000 from 14250000 to get -1080000.
-x^{2}+2100x-1080000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2100±\sqrt{2100^{2}-4\left(-1\right)\left(-1080000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2100 for b, and -1080000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2100±\sqrt{4410000-4\left(-1\right)\left(-1080000\right)}}{2\left(-1\right)}
Square 2100.
x=\frac{-2100±\sqrt{4410000+4\left(-1080000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2100±\sqrt{4410000-4320000}}{2\left(-1\right)}
Multiply 4 times -1080000.
x=\frac{-2100±\sqrt{90000}}{2\left(-1\right)}
Add 4410000 to -4320000.
x=\frac{-2100±300}{2\left(-1\right)}
Take the square root of 90000.
x=\frac{-2100±300}{-2}
Multiply 2 times -1.
x=-\frac{1800}{-2}
Now solve the equation x=\frac{-2100±300}{-2} when ± is plus. Add -2100 to 300.
x=900
Divide -1800 by -2.
x=-\frac{2400}{-2}
Now solve the equation x=\frac{-2100±300}{-2} when ± is minus. Subtract 300 from -2100.
x=1200
Divide -2400 by -2.
x=900 x=1200
The equation is now solved.
50\left(100-\frac{x}{50}\right)\left(3000+x-150\right)-x\times 50=15330000
Multiply both sides of the equation by 50.
50\left(100-\frac{x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Subtract 150 from 3000 to get 2850.
\left(5000+50\left(-\frac{x}{50}\right)\right)\left(2850+x\right)-x\times 50=15330000
Use the distributive property to multiply 50 by 100-\frac{x}{50}.
\left(5000+\frac{-50x}{50}\right)\left(2850+x\right)-x\times 50=15330000
Express 50\left(-\frac{x}{50}\right) as a single fraction.
\left(5000-x\right)\left(2850+x\right)-x\times 50=15330000
Cancel out 50 and 50.
14250000+5000x-2850x-x^{2}-x\times 50=15330000
Apply the distributive property by multiplying each term of 5000-x by each term of 2850+x.
14250000+2150x-x^{2}-x\times 50=15330000
Combine 5000x and -2850x to get 2150x.
14250000+2100x-x^{2}=15330000
Combine 2150x and -x\times 50 to get 2100x.
2100x-x^{2}=15330000-14250000
Subtract 14250000 from both sides.
2100x-x^{2}=1080000
Subtract 14250000 from 15330000 to get 1080000.
-x^{2}+2100x=1080000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2100x}{-1}=\frac{1080000}{-1}
Divide both sides by -1.
x^{2}+\frac{2100}{-1}x=\frac{1080000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2100x=\frac{1080000}{-1}
Divide 2100 by -1.
x^{2}-2100x=-1080000
Divide 1080000 by -1.
x^{2}-2100x+\left(-1050\right)^{2}=-1080000+\left(-1050\right)^{2}
Divide -2100, the coefficient of the x term, by 2 to get -1050. Then add the square of -1050 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2100x+1102500=-1080000+1102500
Square -1050.
x^{2}-2100x+1102500=22500
Add -1080000 to 1102500.
\left(x-1050\right)^{2}=22500
Factor x^{2}-2100x+1102500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1050\right)^{2}}=\sqrt{22500}
Take the square root of both sides of the equation.
x-1050=150 x-1050=-150
Simplify.
x=1200 x=900
Add 1050 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}