Solve for x
x=2\sqrt{6}+3\approx 7.898979486
x=3-2\sqrt{6}\approx -1.898979486
Graph
Share
Copied to clipboard
2000+300x-50x^{2}=1250
Use the distributive property to multiply 10-x by 200+50x and combine like terms.
2000+300x-50x^{2}-1250=0
Subtract 1250 from both sides.
750+300x-50x^{2}=0
Subtract 1250 from 2000 to get 750.
-50x^{2}+300x+750=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-300±\sqrt{300^{2}-4\left(-50\right)\times 750}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 300 for b, and 750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\left(-50\right)\times 750}}{2\left(-50\right)}
Square 300.
x=\frac{-300±\sqrt{90000+200\times 750}}{2\left(-50\right)}
Multiply -4 times -50.
x=\frac{-300±\sqrt{90000+150000}}{2\left(-50\right)}
Multiply 200 times 750.
x=\frac{-300±\sqrt{240000}}{2\left(-50\right)}
Add 90000 to 150000.
x=\frac{-300±200\sqrt{6}}{2\left(-50\right)}
Take the square root of 240000.
x=\frac{-300±200\sqrt{6}}{-100}
Multiply 2 times -50.
x=\frac{200\sqrt{6}-300}{-100}
Now solve the equation x=\frac{-300±200\sqrt{6}}{-100} when ± is plus. Add -300 to 200\sqrt{6}.
x=3-2\sqrt{6}
Divide -300+200\sqrt{6} by -100.
x=\frac{-200\sqrt{6}-300}{-100}
Now solve the equation x=\frac{-300±200\sqrt{6}}{-100} when ± is minus. Subtract 200\sqrt{6} from -300.
x=2\sqrt{6}+3
Divide -300-200\sqrt{6} by -100.
x=3-2\sqrt{6} x=2\sqrt{6}+3
The equation is now solved.
2000+300x-50x^{2}=1250
Use the distributive property to multiply 10-x by 200+50x and combine like terms.
300x-50x^{2}=1250-2000
Subtract 2000 from both sides.
300x-50x^{2}=-750
Subtract 2000 from 1250 to get -750.
-50x^{2}+300x=-750
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50x^{2}+300x}{-50}=-\frac{750}{-50}
Divide both sides by -50.
x^{2}+\frac{300}{-50}x=-\frac{750}{-50}
Dividing by -50 undoes the multiplication by -50.
x^{2}-6x=-\frac{750}{-50}
Divide 300 by -50.
x^{2}-6x=15
Divide -750 by -50.
x^{2}-6x+\left(-3\right)^{2}=15+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=15+9
Square -3.
x^{2}-6x+9=24
Add 15 to 9.
\left(x-3\right)^{2}=24
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x-3=2\sqrt{6} x-3=-2\sqrt{6}
Simplify.
x=2\sqrt{6}+3 x=3-2\sqrt{6}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}