Solve for x
x=\frac{\sqrt{29}}{1000}-2.5\approx -2.494614835
x=-\frac{\sqrt{29}}{1000}-2.5\approx -2.505385165
Graph
Share
Copied to clipboard
1.45\times 10^{-5}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Multiply 5+2x and 5+2x to get \left(5+2x\right)^{2}.
1.45\times \frac{1}{100000}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{29}{2000000}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Multiply 1.45 and \frac{1}{100000} to get \frac{29}{2000000}.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{2^{3}\times 1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+2x\right)^{2}.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{8\times 1}
Calculate 2 to the power of 3 and get 8.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{8}
Multiply 8 and 1 to get 8.
\frac{29}{2000000}=\frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}
Divide each term of 25+20x+4x^{2} by 8 to get \frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}.
\frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}=\frac{29}{2000000}
Swap sides so that all variable terms are on the left hand side.
\frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}-\frac{29}{2000000}=0
Subtract \frac{29}{2000000} from both sides.
\frac{6249971}{2000000}+\frac{5}{2}x+\frac{1}{2}x^{2}=0
Subtract \frac{29}{2000000} from \frac{25}{8} to get \frac{6249971}{2000000}.
\frac{1}{2}x^{2}+\frac{5}{2}x+\frac{6249971}{2000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\times \frac{1}{2}\times \frac{6249971}{2000000}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{5}{2} for b, and \frac{6249971}{2000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\times \frac{1}{2}\times \frac{6249971}{2000000}}}{2\times \frac{1}{2}}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-2\times \frac{6249971}{2000000}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-\frac{6249971}{1000000}}}{2\times \frac{1}{2}}
Multiply -2 times \frac{6249971}{2000000}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{29}{1000000}}}{2\times \frac{1}{2}}
Add \frac{25}{4} to -\frac{6249971}{1000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{5}{2}±\frac{\sqrt{29}}{1000}}{2\times \frac{1}{2}}
Take the square root of \frac{29}{1000000}.
x=\frac{-\frac{5}{2}±\frac{\sqrt{29}}{1000}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\frac{\sqrt{29}}{1000}-\frac{5}{2}}{1}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{29}}{1000}}{1} when ± is plus. Add -\frac{5}{2} to \frac{\sqrt{29}}{1000}.
x=\frac{\sqrt{29}}{1000}-\frac{5}{2}
Divide -\frac{5}{2}+\frac{\sqrt{29}}{1000} by 1.
x=\frac{-\frac{\sqrt{29}}{1000}-\frac{5}{2}}{1}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{29}}{1000}}{1} when ± is minus. Subtract \frac{\sqrt{29}}{1000} from -\frac{5}{2}.
x=-\frac{\sqrt{29}}{1000}-\frac{5}{2}
Divide -\frac{5}{2}-\frac{\sqrt{29}}{1000} by 1.
x=\frac{\sqrt{29}}{1000}-\frac{5}{2} x=-\frac{\sqrt{29}}{1000}-\frac{5}{2}
The equation is now solved.
1.45\times 10^{-5}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Multiply 5+2x and 5+2x to get \left(5+2x\right)^{2}.
1.45\times \frac{1}{100000}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\frac{29}{2000000}=\frac{\left(5+2x\right)^{2}}{2^{3}\times 1}
Multiply 1.45 and \frac{1}{100000} to get \frac{29}{2000000}.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{2^{3}\times 1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+2x\right)^{2}.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{8\times 1}
Calculate 2 to the power of 3 and get 8.
\frac{29}{2000000}=\frac{25+20x+4x^{2}}{8}
Multiply 8 and 1 to get 8.
\frac{29}{2000000}=\frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}
Divide each term of 25+20x+4x^{2} by 8 to get \frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}.
\frac{25}{8}+\frac{5}{2}x+\frac{1}{2}x^{2}=\frac{29}{2000000}
Swap sides so that all variable terms are on the left hand side.
\frac{5}{2}x+\frac{1}{2}x^{2}=\frac{29}{2000000}-\frac{25}{8}
Subtract \frac{25}{8} from both sides.
\frac{5}{2}x+\frac{1}{2}x^{2}=-\frac{6249971}{2000000}
Subtract \frac{25}{8} from \frac{29}{2000000} to get -\frac{6249971}{2000000}.
\frac{1}{2}x^{2}+\frac{5}{2}x=-\frac{6249971}{2000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+\frac{5}{2}x}{\frac{1}{2}}=-\frac{\frac{6249971}{2000000}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{5}{2}}{\frac{1}{2}}x=-\frac{\frac{6249971}{2000000}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+5x=-\frac{\frac{6249971}{2000000}}{\frac{1}{2}}
Divide \frac{5}{2} by \frac{1}{2} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{2}.
x^{2}+5x=-\frac{6249971}{1000000}
Divide -\frac{6249971}{2000000} by \frac{1}{2} by multiplying -\frac{6249971}{2000000} by the reciprocal of \frac{1}{2}.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{6249971}{1000000}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-\frac{6249971}{1000000}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{29}{1000000}
Add -\frac{6249971}{1000000} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{29}{1000000}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{29}{1000000}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{29}}{1000} x+\frac{5}{2}=-\frac{\sqrt{29}}{1000}
Simplify.
x=\frac{\sqrt{29}}{1000}-\frac{5}{2} x=-\frac{\sqrt{29}}{1000}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}