Evaluate
\frac{16\sqrt{2}}{27}-\frac{64}{81}\approx 0.047929025
Factor
\frac{16 {(3 \sqrt{2} - 4)}}{81} = 0.04792902461615519
Share
Copied to clipboard
\left(\frac{3}{3}-\frac{2\sqrt{2}}{3}\right)\times \frac{16\sqrt{2}}{27}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{3-2\sqrt{2}}{3}\times \frac{16\sqrt{2}}{27}
Since \frac{3}{3} and \frac{2\sqrt{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3-2\sqrt{2}\right)\times 16\sqrt{2}}{3\times 27}
Multiply \frac{3-2\sqrt{2}}{3} times \frac{16\sqrt{2}}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3-2\sqrt{2}\right)\times 16\sqrt{2}}{81}
Multiply 3 and 27 to get 81.
\frac{\left(48-32\sqrt{2}\right)\sqrt{2}}{81}
Use the distributive property to multiply 3-2\sqrt{2} by 16.
\frac{48\sqrt{2}-32\left(\sqrt{2}\right)^{2}}{81}
Use the distributive property to multiply 48-32\sqrt{2} by \sqrt{2}.
\frac{48\sqrt{2}-32\times 2}{81}
The square of \sqrt{2} is 2.
\frac{48\sqrt{2}-64}{81}
Multiply -32 and 2 to get -64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}