Evaluate
\frac{92}{5e^{3}}\approx 0.916082058
Expand
\frac{92}{5e^{3}}
Quiz
Algebra
5 problems similar to:
(1+3+9 \div 2+27 \div 6+81 \div 24+243 \div 120) \times {(e)^{ -3 }}
Share
Copied to clipboard
\left(4+\frac{9}{2}+\frac{27}{6}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add 1 and 3 to get 4.
\left(\frac{17}{2}+\frac{27}{6}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add 4 and \frac{9}{2} to get \frac{17}{2}.
\left(\frac{17}{2}+\frac{9}{2}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Reduce the fraction \frac{27}{6} to lowest terms by extracting and canceling out 3.
\left(13+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add \frac{17}{2} and \frac{9}{2} to get 13.
\left(13+\frac{27}{8}+\frac{243}{120}\right)e^{-3}
Reduce the fraction \frac{81}{24} to lowest terms by extracting and canceling out 3.
\left(\frac{131}{8}+\frac{243}{120}\right)e^{-3}
Add 13 and \frac{27}{8} to get \frac{131}{8}.
\left(\frac{131}{8}+\frac{81}{40}\right)e^{-3}
Reduce the fraction \frac{243}{120} to lowest terms by extracting and canceling out 3.
\frac{92}{5}e^{-3}
Add \frac{131}{8} and \frac{81}{40} to get \frac{92}{5}.
\left(4+\frac{9}{2}+\frac{27}{6}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add 1 and 3 to get 4.
\left(\frac{17}{2}+\frac{27}{6}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add 4 and \frac{9}{2} to get \frac{17}{2}.
\left(\frac{17}{2}+\frac{9}{2}+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Reduce the fraction \frac{27}{6} to lowest terms by extracting and canceling out 3.
\left(13+\frac{81}{24}+\frac{243}{120}\right)e^{-3}
Add \frac{17}{2} and \frac{9}{2} to get 13.
\left(13+\frac{27}{8}+\frac{243}{120}\right)e^{-3}
Reduce the fraction \frac{81}{24} to lowest terms by extracting and canceling out 3.
\left(\frac{131}{8}+\frac{243}{120}\right)e^{-3}
Add 13 and \frac{27}{8} to get \frac{131}{8}.
\left(\frac{131}{8}+\frac{81}{40}\right)e^{-3}
Reduce the fraction \frac{243}{120} to lowest terms by extracting and canceling out 3.
\frac{92}{5}e^{-3}
Add \frac{131}{8} and \frac{81}{40} to get \frac{92}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}