Solve for x (complex solution)
x=4+\sqrt{113}i\approx 4+10.630145813i
x=-\sqrt{113}i+4\approx 4-10.630145813i
Graph
Share
Copied to clipboard
2\left(1+\frac{x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Multiply both sides of the equation by 2.
\left(2+2\times \frac{x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Use the distributive property to multiply 2 by 1+\frac{x}{2}.
\left(2+\frac{2x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Express 2\times \frac{x}{2} as a single fraction.
\left(2+x\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Cancel out 2 and 2.
2000-400x+1000x-200x^{2}+1000\left(1+x\right)=28800
Apply the distributive property by multiplying each term of 2+x by each term of 1000-200x.
2000+600x-200x^{2}+1000\left(1+x\right)=28800
Combine -400x and 1000x to get 600x.
2000+600x-200x^{2}+1000+1000x=28800
Use the distributive property to multiply 1000 by 1+x.
3000+600x-200x^{2}+1000x=28800
Add 2000 and 1000 to get 3000.
3000+1600x-200x^{2}=28800
Combine 600x and 1000x to get 1600x.
3000+1600x-200x^{2}-28800=0
Subtract 28800 from both sides.
-25800+1600x-200x^{2}=0
Subtract 28800 from 3000 to get -25800.
-200x^{2}+1600x-25800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1600±\sqrt{1600^{2}-4\left(-200\right)\left(-25800\right)}}{2\left(-200\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -200 for a, 1600 for b, and -25800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1600±\sqrt{2560000-4\left(-200\right)\left(-25800\right)}}{2\left(-200\right)}
Square 1600.
x=\frac{-1600±\sqrt{2560000+800\left(-25800\right)}}{2\left(-200\right)}
Multiply -4 times -200.
x=\frac{-1600±\sqrt{2560000-20640000}}{2\left(-200\right)}
Multiply 800 times -25800.
x=\frac{-1600±\sqrt{-18080000}}{2\left(-200\right)}
Add 2560000 to -20640000.
x=\frac{-1600±400\sqrt{113}i}{2\left(-200\right)}
Take the square root of -18080000.
x=\frac{-1600±400\sqrt{113}i}{-400}
Multiply 2 times -200.
x=\frac{-1600+400\sqrt{113}i}{-400}
Now solve the equation x=\frac{-1600±400\sqrt{113}i}{-400} when ± is plus. Add -1600 to 400i\sqrt{113}.
x=-\sqrt{113}i+4
Divide -1600+400i\sqrt{113} by -400.
x=\frac{-400\sqrt{113}i-1600}{-400}
Now solve the equation x=\frac{-1600±400\sqrt{113}i}{-400} when ± is minus. Subtract 400i\sqrt{113} from -1600.
x=4+\sqrt{113}i
Divide -1600-400i\sqrt{113} by -400.
x=-\sqrt{113}i+4 x=4+\sqrt{113}i
The equation is now solved.
2\left(1+\frac{x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Multiply both sides of the equation by 2.
\left(2+2\times \frac{x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Use the distributive property to multiply 2 by 1+\frac{x}{2}.
\left(2+\frac{2x}{2}\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Express 2\times \frac{x}{2} as a single fraction.
\left(2+x\right)\left(1000-200x\right)+1000\left(1+x\right)=28800
Cancel out 2 and 2.
2000-400x+1000x-200x^{2}+1000\left(1+x\right)=28800
Apply the distributive property by multiplying each term of 2+x by each term of 1000-200x.
2000+600x-200x^{2}+1000\left(1+x\right)=28800
Combine -400x and 1000x to get 600x.
2000+600x-200x^{2}+1000+1000x=28800
Use the distributive property to multiply 1000 by 1+x.
3000+600x-200x^{2}+1000x=28800
Add 2000 and 1000 to get 3000.
3000+1600x-200x^{2}=28800
Combine 600x and 1000x to get 1600x.
1600x-200x^{2}=28800-3000
Subtract 3000 from both sides.
1600x-200x^{2}=25800
Subtract 3000 from 28800 to get 25800.
-200x^{2}+1600x=25800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-200x^{2}+1600x}{-200}=\frac{25800}{-200}
Divide both sides by -200.
x^{2}+\frac{1600}{-200}x=\frac{25800}{-200}
Dividing by -200 undoes the multiplication by -200.
x^{2}-8x=\frac{25800}{-200}
Divide 1600 by -200.
x^{2}-8x=-129
Divide 25800 by -200.
x^{2}-8x+\left(-4\right)^{2}=-129+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-129+16
Square -4.
x^{2}-8x+16=-113
Add -129 to 16.
\left(x-4\right)^{2}=-113
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-113}
Take the square root of both sides of the equation.
x-4=\sqrt{113}i x-4=-\sqrt{113}i
Simplify.
x=4+\sqrt{113}i x=-\sqrt{113}i+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}