Solve for x
x=30
Graph
Share
Copied to clipboard
\left(1+\frac{10}{15}+1.2\right)x=86
Expand \frac{1}{1.5} by multiplying both numerator and the denominator by 10.
\left(1+\frac{2}{3}+1.2\right)x=86
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
\left(\frac{3}{3}+\frac{2}{3}+1.2\right)x=86
Convert 1 to fraction \frac{3}{3}.
\left(\frac{3+2}{3}+1.2\right)x=86
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\left(\frac{5}{3}+1.2\right)x=86
Add 3 and 2 to get 5.
\left(\frac{5}{3}+\frac{6}{5}\right)x=86
Convert decimal number 1.2 to fraction \frac{12}{10}. Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{25}{15}+\frac{18}{15}\right)x=86
Least common multiple of 3 and 5 is 15. Convert \frac{5}{3} and \frac{6}{5} to fractions with denominator 15.
\frac{25+18}{15}x=86
Since \frac{25}{15} and \frac{18}{15} have the same denominator, add them by adding their numerators.
\frac{43}{15}x=86
Add 25 and 18 to get 43.
x=86\times \frac{15}{43}
Multiply both sides by \frac{15}{43}, the reciprocal of \frac{43}{15}.
x=\frac{86\times 15}{43}
Express 86\times \frac{15}{43} as a single fraction.
x=\frac{1290}{43}
Multiply 86 and 15 to get 1290.
x=30
Divide 1290 by 43 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}