Solve for x
x=-12
x=8
Graph
Share
Copied to clipboard
\frac{1}{2}xx+\frac{1}{2}x\times 4=48
Use the distributive property to multiply \frac{1}{2}x by x+4.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 4=48
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{4}{2}x=48
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{1}{2}x^{2}+2x=48
Divide 4 by 2 to get 2.
\frac{1}{2}x^{2}+2x-48=0
Subtract 48 from both sides.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\left(-48\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 2 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{1}{2}\left(-48\right)}}{2\times \frac{1}{2}}
Square 2.
x=\frac{-2±\sqrt{4-2\left(-48\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-2±\sqrt{4+96}}{2\times \frac{1}{2}}
Multiply -2 times -48.
x=\frac{-2±\sqrt{100}}{2\times \frac{1}{2}}
Add 4 to 96.
x=\frac{-2±10}{2\times \frac{1}{2}}
Take the square root of 100.
x=\frac{-2±10}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{8}{1}
Now solve the equation x=\frac{-2±10}{1} when ± is plus. Add -2 to 10.
x=8
Divide 8 by 1.
x=-\frac{12}{1}
Now solve the equation x=\frac{-2±10}{1} when ± is minus. Subtract 10 from -2.
x=-12
Divide -12 by 1.
x=8 x=-12
The equation is now solved.
\frac{1}{2}xx+\frac{1}{2}x\times 4=48
Use the distributive property to multiply \frac{1}{2}x by x+4.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 4=48
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{4}{2}x=48
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{1}{2}x^{2}+2x=48
Divide 4 by 2 to get 2.
\frac{\frac{1}{2}x^{2}+2x}{\frac{1}{2}}=\frac{48}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{2}{\frac{1}{2}}x=\frac{48}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+4x=\frac{48}{\frac{1}{2}}
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+4x=96
Divide 48 by \frac{1}{2} by multiplying 48 by the reciprocal of \frac{1}{2}.
x^{2}+4x+2^{2}=96+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=96+4
Square 2.
x^{2}+4x+4=100
Add 96 to 4.
\left(x+2\right)^{2}=100
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x+2=10 x+2=-10
Simplify.
x=8 x=-12
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}