Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}xx+\frac{1}{2}x\times 4=48
Use the distributive property to multiply \frac{1}{2}x by x+4.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 4=48
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{4}{2}x=48
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{1}{2}x^{2}+2x=48
Divide 4 by 2 to get 2.
\frac{1}{2}x^{2}+2x-48=0
Subtract 48 from both sides.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\left(-48\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 2 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{1}{2}\left(-48\right)}}{2\times \frac{1}{2}}
Square 2.
x=\frac{-2±\sqrt{4-2\left(-48\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-2±\sqrt{4+96}}{2\times \frac{1}{2}}
Multiply -2 times -48.
x=\frac{-2±\sqrt{100}}{2\times \frac{1}{2}}
Add 4 to 96.
x=\frac{-2±10}{2\times \frac{1}{2}}
Take the square root of 100.
x=\frac{-2±10}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{8}{1}
Now solve the equation x=\frac{-2±10}{1} when ± is plus. Add -2 to 10.
x=8
Divide 8 by 1.
x=-\frac{12}{1}
Now solve the equation x=\frac{-2±10}{1} when ± is minus. Subtract 10 from -2.
x=-12
Divide -12 by 1.
x=8 x=-12
The equation is now solved.
\frac{1}{2}xx+\frac{1}{2}x\times 4=48
Use the distributive property to multiply \frac{1}{2}x by x+4.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 4=48
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{4}{2}x=48
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{1}{2}x^{2}+2x=48
Divide 4 by 2 to get 2.
\frac{\frac{1}{2}x^{2}+2x}{\frac{1}{2}}=\frac{48}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{2}{\frac{1}{2}}x=\frac{48}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+4x=\frac{48}{\frac{1}{2}}
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+4x=96
Divide 48 by \frac{1}{2} by multiplying 48 by the reciprocal of \frac{1}{2}.
x^{2}+4x+2^{2}=96+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=96+4
Square 2.
x^{2}+4x+4=100
Add 96 to 4.
\left(x+2\right)^{2}=100
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x+2=10 x+2=-10
Simplify.
x=8 x=-12
Subtract 2 from both sides of the equation.