(1 \div (60 \% -15 \% ) \times 5 \% ) \div (1-1 \div (60 \% -15 \% ) \times 5 \% \times 100 \% )
Evaluate
\frac{1}{8}=0.125
Factor
\frac{1}{2 ^ {3}} = 0.125
Share
Copied to clipboard
\frac{\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Divide 100 by 100 to get 1.
\frac{\frac{1}{\frac{3}{5}-\frac{15}{100}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{1}{\frac{3}{5}-\frac{3}{20}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{\frac{12}{20}-\frac{3}{20}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Least common multiple of 5 and 20 is 20. Convert \frac{3}{5} and \frac{3}{20} to fractions with denominator 20.
\frac{\frac{1}{\frac{12-3}{20}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Since \frac{12}{20} and \frac{3}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{\frac{9}{20}}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Subtract 3 from 12 to get 9.
\frac{1\times \frac{20}{9}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Divide 1 by \frac{9}{20} by multiplying 1 by the reciprocal of \frac{9}{20}.
\frac{\frac{20}{9}\times \frac{5}{100}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Multiply 1 and \frac{20}{9} to get \frac{20}{9}.
\frac{\frac{20}{9}\times \frac{1}{20}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{20\times 1}{9\times 20}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Multiply \frac{20}{9} times \frac{1}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{60}{100}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Cancel out 20 in both numerator and denominator.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{3}{5}-\frac{15}{100}}\times \frac{5}{100}\times 1}
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{3}{5}-\frac{3}{20}}\times \frac{5}{100}\times 1}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{12}{20}-\frac{3}{20}}\times \frac{5}{100}\times 1}
Least common multiple of 5 and 20 is 20. Convert \frac{3}{5} and \frac{3}{20} to fractions with denominator 20.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{12-3}{20}}\times \frac{5}{100}\times 1}
Since \frac{12}{20} and \frac{3}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{9}}{1-\frac{1}{\frac{9}{20}}\times \frac{5}{100}\times 1}
Subtract 3 from 12 to get 9.
\frac{\frac{1}{9}}{1-1\times \frac{20}{9}\times \frac{5}{100}\times 1}
Divide 1 by \frac{9}{20} by multiplying 1 by the reciprocal of \frac{9}{20}.
\frac{\frac{1}{9}}{1-\frac{20}{9}\times \frac{5}{100}\times 1}
Multiply 1 and \frac{20}{9} to get \frac{20}{9}.
\frac{\frac{1}{9}}{1-\frac{20}{9}\times \frac{1}{20}\times 1}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{9}}{1-\frac{20\times 1}{9\times 20}\times 1}
Multiply \frac{20}{9} times \frac{1}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{9}}{1-\frac{1}{9}\times 1}
Cancel out 20 in both numerator and denominator.
\frac{\frac{1}{9}}{1-\frac{1}{9}}
Multiply \frac{1}{9} and 1 to get \frac{1}{9}.
\frac{\frac{1}{9}}{\frac{9}{9}-\frac{1}{9}}
Convert 1 to fraction \frac{9}{9}.
\frac{\frac{1}{9}}{\frac{9-1}{9}}
Since \frac{9}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{9}}{\frac{8}{9}}
Subtract 1 from 9 to get 8.
\frac{1}{9}\times \frac{9}{8}
Divide \frac{1}{9} by \frac{8}{9} by multiplying \frac{1}{9} by the reciprocal of \frac{8}{9}.
\frac{1\times 9}{9\times 8}
Multiply \frac{1}{9} times \frac{9}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}
Cancel out 9 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}