Solve for x
x=-\frac{\sqrt{6250027}}{500000}+0.005\approx -0.000000011
x=\frac{\sqrt{6250027}}{500000}+0.005\approx 0.010000011
Graph
Share
Copied to clipboard
\left(0.01-x\right)\left(0\times 0\times 1-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 0 to get 0.
\left(0.01-x\right)\left(0\times 1-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 0 to get 0.
\left(0.01-x\right)\left(0-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 1 to get 0.
\left(0.01-x\right)\left(-1\right)x=\frac{1.08}{10^{10}}
Anything plus zero gives itself.
\left(-0.01+x\right)x=\frac{1.08}{10^{10}}
Use the distributive property to multiply 0.01-x by -1.
-0.01x+x^{2}=\frac{1.08}{10^{10}}
Use the distributive property to multiply -0.01+x by x.
-0.01x+x^{2}=\frac{1.08}{10000000000}
Calculate 10 to the power of 10 and get 10000000000.
-0.01x+x^{2}=\frac{108}{1000000000000}
Expand \frac{1.08}{10000000000} by multiplying both numerator and the denominator by 100.
-0.01x+x^{2}=\frac{27}{250000000000}
Reduce the fraction \frac{108}{1000000000000} to lowest terms by extracting and canceling out 4.
-0.01x+x^{2}-\frac{27}{250000000000}=0
Subtract \frac{27}{250000000000} from both sides.
x^{2}-0.01x-\frac{27}{250000000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.01\right)±\sqrt{\left(-0.01\right)^{2}-4\left(-\frac{27}{250000000000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -0.01 for b, and -\frac{27}{250000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.01\right)±\sqrt{0.0001-4\left(-\frac{27}{250000000000}\right)}}{2}
Square -0.01 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.01\right)±\sqrt{0.0001+\frac{27}{62500000000}}}{2}
Multiply -4 times -\frac{27}{250000000000}.
x=\frac{-\left(-0.01\right)±\sqrt{\frac{6250027}{62500000000}}}{2}
Add 0.0001 to \frac{27}{62500000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.01\right)±\frac{\sqrt{6250027}}{250000}}{2}
Take the square root of \frac{6250027}{62500000000}.
x=\frac{0.01±\frac{\sqrt{6250027}}{250000}}{2}
The opposite of -0.01 is 0.01.
x=\frac{\frac{\sqrt{6250027}}{250000}+\frac{1}{100}}{2}
Now solve the equation x=\frac{0.01±\frac{\sqrt{6250027}}{250000}}{2} when ± is plus. Add 0.01 to \frac{\sqrt{6250027}}{250000}.
x=\frac{\sqrt{6250027}}{500000}+\frac{1}{200}
Divide \frac{1}{100}+\frac{\sqrt{6250027}}{250000} by 2.
x=\frac{-\frac{\sqrt{6250027}}{250000}+\frac{1}{100}}{2}
Now solve the equation x=\frac{0.01±\frac{\sqrt{6250027}}{250000}}{2} when ± is minus. Subtract \frac{\sqrt{6250027}}{250000} from 0.01.
x=-\frac{\sqrt{6250027}}{500000}+\frac{1}{200}
Divide \frac{1}{100}-\frac{\sqrt{6250027}}{250000} by 2.
x=\frac{\sqrt{6250027}}{500000}+\frac{1}{200} x=-\frac{\sqrt{6250027}}{500000}+\frac{1}{200}
The equation is now solved.
\left(0.01-x\right)\left(0\times 0\times 1-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 0 to get 0.
\left(0.01-x\right)\left(0\times 1-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 0 to get 0.
\left(0.01-x\right)\left(0-x\right)=\frac{1.08}{10^{10}}
Multiply 0 and 1 to get 0.
\left(0.01-x\right)\left(-1\right)x=\frac{1.08}{10^{10}}
Anything plus zero gives itself.
\left(-0.01+x\right)x=\frac{1.08}{10^{10}}
Use the distributive property to multiply 0.01-x by -1.
-0.01x+x^{2}=\frac{1.08}{10^{10}}
Use the distributive property to multiply -0.01+x by x.
-0.01x+x^{2}=\frac{1.08}{10000000000}
Calculate 10 to the power of 10 and get 10000000000.
-0.01x+x^{2}=\frac{108}{1000000000000}
Expand \frac{1.08}{10000000000} by multiplying both numerator and the denominator by 100.
-0.01x+x^{2}=\frac{27}{250000000000}
Reduce the fraction \frac{108}{1000000000000} to lowest terms by extracting and canceling out 4.
x^{2}-0.01x=\frac{27}{250000000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-0.01x+\left(-0.005\right)^{2}=\frac{27}{250000000000}+\left(-0.005\right)^{2}
Divide -0.01, the coefficient of the x term, by 2 to get -0.005. Then add the square of -0.005 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.01x+0.000025=\frac{27}{250000000000}+0.000025
Square -0.005 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.01x+0.000025=\frac{6250027}{250000000000}
Add \frac{27}{250000000000} to 0.000025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.005\right)^{2}=\frac{6250027}{250000000000}
Factor x^{2}-0.01x+0.000025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.005\right)^{2}}=\sqrt{\frac{6250027}{250000000000}}
Take the square root of both sides of the equation.
x-0.005=\frac{\sqrt{6250027}}{500000} x-0.005=-\frac{\sqrt{6250027}}{500000}
Simplify.
x=\frac{\sqrt{6250027}}{500000}+\frac{1}{200} x=-\frac{\sqrt{6250027}}{500000}+\frac{1}{200}
Add 0.005 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}