Evaluate
62.51
Factor
\frac{7 \cdot 19 \cdot 47}{2 ^ {2} \cdot 5 ^ {2}} = 62\frac{51}{100} = 62.51
Quiz
Arithmetic
5 problems similar to:
(-5(- \frac{ 5 }{ 7 } \times 7(3 \times 0.3)-10)+0.18 \div 18-10)
Share
Copied to clipboard
-5\left(-5\times 3\times 0.3-10\right)+\frac{0.18}{18}-10
Cancel out 7 and 7.
-5\left(-15\times 0.3-10\right)+\frac{0.18}{18}-10
Multiply -5 and 3 to get -15.
-5\left(-4.5-10\right)+\frac{0.18}{18}-10
Multiply -15 and 0.3 to get -4.5.
-5\left(-14.5\right)+\frac{0.18}{18}-10
Subtract 10 from -4.5 to get -14.5.
72.5+\frac{0.18}{18}-10
Multiply -5 and -14.5 to get 72.5.
72.5+\frac{18}{1800}-10
Expand \frac{0.18}{18} by multiplying both numerator and the denominator by 100.
72.5+\frac{1}{100}-10
Reduce the fraction \frac{18}{1800} to lowest terms by extracting and canceling out 18.
\frac{145}{2}+\frac{1}{100}-10
Convert decimal number 72.5 to fraction \frac{725}{10}. Reduce the fraction \frac{725}{10} to lowest terms by extracting and canceling out 5.
\frac{7250}{100}+\frac{1}{100}-10
Least common multiple of 2 and 100 is 100. Convert \frac{145}{2} and \frac{1}{100} to fractions with denominator 100.
\frac{7250+1}{100}-10
Since \frac{7250}{100} and \frac{1}{100} have the same denominator, add them by adding their numerators.
\frac{7251}{100}-10
Add 7250 and 1 to get 7251.
\frac{7251}{100}-\frac{1000}{100}
Convert 10 to fraction \frac{1000}{100}.
\frac{7251-1000}{100}
Since \frac{7251}{100} and \frac{1000}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{6251}{100}
Subtract 1000 from 7251 to get 6251.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}