Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-4\right)^{1}x^{3}x^{5}\times 5^{1}x^{1}x^{3}
Use the rules of exponents to simplify the expression.
\left(-4\right)^{1}\times 5^{1}x^{3}x^{1}x^{5}x^{3}
Use the Commutative Property of Multiplication.
\left(-4\right)^{1}\times 5^{1}x^{3+1}x^{5+3}
To multiply powers of the same base, add their exponents.
\left(-4\right)^{1}\times 5^{1}x^{4}x^{5+3}
Add the exponents 3 and 1.
\left(-4\right)^{1}\times 5^{1}x^{4}x^{8}
Add the exponents 5 and 3.
-20x^{4}x^{8}
Multiply -4 times 5.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{8}\times 5xx^{3})
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{9}\times 5x^{3})
To multiply powers of the same base, add their exponents. Add 8 and 1 to get 9.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{12}\times 5)
To multiply powers of the same base, add their exponents. Add 9 and 3 to get 12.
\frac{\mathrm{d}}{\mathrm{d}x}(-20x^{12})
Multiply -4 and 5 to get -20.
12\left(-20\right)x^{12-1}
The derivative of ax^{n} is nax^{n-1}.
-240x^{12-1}
Multiply 12 times -20.
-240x^{11}
Subtract 1 from 12.