Evaluate
-20x^{12}
Differentiate w.r.t. x
-240x^{11}
Graph
Share
Copied to clipboard
\left(-4\right)^{1}x^{3}x^{5}\times 5^{1}x^{1}x^{3}
Use the rules of exponents to simplify the expression.
\left(-4\right)^{1}\times 5^{1}x^{3}x^{1}x^{5}x^{3}
Use the Commutative Property of Multiplication.
\left(-4\right)^{1}\times 5^{1}x^{3+1}x^{5+3}
To multiply powers of the same base, add their exponents.
\left(-4\right)^{1}\times 5^{1}x^{4}x^{5+3}
Add the exponents 3 and 1.
\left(-4\right)^{1}\times 5^{1}x^{4}x^{8}
Add the exponents 5 and 3.
-20x^{4}x^{8}
Multiply -4 times 5.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{8}\times 5xx^{3})
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{9}\times 5x^{3})
To multiply powers of the same base, add their exponents. Add 8 and 1 to get 9.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{12}\times 5)
To multiply powers of the same base, add their exponents. Add 9 and 3 to get 12.
\frac{\mathrm{d}}{\mathrm{d}x}(-20x^{12})
Multiply -4 and 5 to get -20.
12\left(-20\right)x^{12-1}
The derivative of ax^{n} is nax^{n-1}.
-240x^{12-1}
Multiply 12 times -20.
-240x^{11}
Subtract 1 from 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}