Evaluate
14x^{2}-4x-23
Factor
14\left(x-\left(-\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)\left(x-\left(\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)
Graph
Share
Copied to clipboard
5x-9+14x^{2}-9x-14
Combine -2x and 7x to get 5x.
-4x-9+14x^{2}-14
Combine 5x and -9x to get -4x.
-4x-23+14x^{2}
Subtract 14 from -9 to get -23.
factor(5x-9+14x^{2}-9x-14)
Combine -2x and 7x to get 5x.
factor(-4x-9+14x^{2}-14)
Combine 5x and -9x to get -4x.
factor(-4x-23+14x^{2})
Subtract 14 from -9 to get -23.
14x^{2}-4x-23=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 14\left(-23\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 14\left(-23\right)}}{2\times 14}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-56\left(-23\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-4\right)±\sqrt{16+1288}}{2\times 14}
Multiply -56 times -23.
x=\frac{-\left(-4\right)±\sqrt{1304}}{2\times 14}
Add 16 to 1288.
x=\frac{-\left(-4\right)±2\sqrt{326}}{2\times 14}
Take the square root of 1304.
x=\frac{4±2\sqrt{326}}{2\times 14}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{326}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{326}+4}{28}
Now solve the equation x=\frac{4±2\sqrt{326}}{28} when ± is plus. Add 4 to 2\sqrt{326}.
x=\frac{\sqrt{326}}{14}+\frac{1}{7}
Divide 4+2\sqrt{326} by 28.
x=\frac{4-2\sqrt{326}}{28}
Now solve the equation x=\frac{4±2\sqrt{326}}{28} when ± is minus. Subtract 2\sqrt{326} from 4.
x=-\frac{\sqrt{326}}{14}+\frac{1}{7}
Divide 4-2\sqrt{326} by 28.
14x^{2}-4x-23=14\left(x-\left(\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)\left(x-\left(-\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{7}+\frac{\sqrt{326}}{14} for x_{1} and \frac{1}{7}-\frac{\sqrt{326}}{14} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}