Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-9+14x^{2}-9x-14
Combine -2x and 7x to get 5x.
-4x-9+14x^{2}-14
Combine 5x and -9x to get -4x.
-4x-23+14x^{2}
Subtract 14 from -9 to get -23.
factor(5x-9+14x^{2}-9x-14)
Combine -2x and 7x to get 5x.
factor(-4x-9+14x^{2}-14)
Combine 5x and -9x to get -4x.
factor(-4x-23+14x^{2})
Subtract 14 from -9 to get -23.
14x^{2}-4x-23=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 14\left(-23\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 14\left(-23\right)}}{2\times 14}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-56\left(-23\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-\left(-4\right)±\sqrt{16+1288}}{2\times 14}
Multiply -56 times -23.
x=\frac{-\left(-4\right)±\sqrt{1304}}{2\times 14}
Add 16 to 1288.
x=\frac{-\left(-4\right)±2\sqrt{326}}{2\times 14}
Take the square root of 1304.
x=\frac{4±2\sqrt{326}}{2\times 14}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{326}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{326}+4}{28}
Now solve the equation x=\frac{4±2\sqrt{326}}{28} when ± is plus. Add 4 to 2\sqrt{326}.
x=\frac{\sqrt{326}}{14}+\frac{1}{7}
Divide 4+2\sqrt{326} by 28.
x=\frac{4-2\sqrt{326}}{28}
Now solve the equation x=\frac{4±2\sqrt{326}}{28} when ± is minus. Subtract 2\sqrt{326} from 4.
x=-\frac{\sqrt{326}}{14}+\frac{1}{7}
Divide 4-2\sqrt{326} by 28.
14x^{2}-4x-23=14\left(x-\left(\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)\left(x-\left(-\frac{\sqrt{326}}{14}+\frac{1}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{7}+\frac{\sqrt{326}}{14} for x_{1} and \frac{1}{7}-\frac{\sqrt{326}}{14} for x_{2}.