(-2- \sqrt{ -7 } )(2+ \sqrt{ -7) }
Evaluate (complex solution)
-4\sqrt{7}i+3\approx 3-10.583005244i
Evaluate
\text{Indeterminate}
Real Part (complex solution)
3
Share
Copied to clipboard
\left(-2-\sqrt{7}i\right)\left(2+\sqrt{-7}\right)
Factor -7=7\left(-1\right). Rewrite the square root of the product \sqrt{7\left(-1\right)} as the product of square roots \sqrt{7}\sqrt{-1}. By definition, the square root of -1 is i.
\left(-2-i\sqrt{7}\right)\left(2+\sqrt{-7}\right)
Multiply -1 and i to get -i.
\left(-2-i\sqrt{7}\right)\left(2+\sqrt{7}i\right)
Factor -7=7\left(-1\right). Rewrite the square root of the product \sqrt{7\left(-1\right)} as the product of square roots \sqrt{7}\sqrt{-1}. By definition, the square root of -1 is i.
-4-2\sqrt{7}i-2i\sqrt{7}+\left(\sqrt{7}\right)^{2}
Apply the distributive property by multiplying each term of -2-i\sqrt{7} by each term of 2+\sqrt{7}i.
-4-2i\sqrt{7}-2i\sqrt{7}+\left(\sqrt{7}\right)^{2}
Multiply -2 and i to get -2i.
-4-4i\sqrt{7}+\left(\sqrt{7}\right)^{2}
Combine -2i\sqrt{7} and -2i\sqrt{7} to get -4i\sqrt{7}.
-4-4i\sqrt{7}+7
The square of \sqrt{7} is 7.
3-4i\sqrt{7}
Add -4 and 7 to get 3.
-4-2\sqrt{-7}-2\sqrt{-7}-\left(\sqrt{-7}\right)^{2}
Apply the distributive property by multiplying each term of -2-\sqrt{-7} by each term of 2+\sqrt{-7}.
-4-4\sqrt{-7}-\left(\sqrt{-7}\right)^{2}
Combine -2\sqrt{-7} and -2\sqrt{-7} to get -4\sqrt{-7}.
-4-4\sqrt{-7}-\left(-7\right)
Calculate \sqrt{-7} to the power of 2 and get -7.
-4-4\sqrt{-7}+7
Multiply -1 and -7 to get 7.
3-4\sqrt{-7}
Add -4 and 7 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}