Solve for x
x=\frac{7-3y}{2}
Solve for y
y=\frac{7-2x}{3}
Graph
Share
Copied to clipboard
-1-y=-\frac{2}{3}\left(5-x\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-1-y=-\frac{10}{3}+\frac{2}{3}x
Use the distributive property to multiply -\frac{2}{3} by 5-x.
-\frac{10}{3}+\frac{2}{3}x=-1-y
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}x=-1-y+\frac{10}{3}
Add \frac{10}{3} to both sides.
\frac{2}{3}x=\frac{7}{3}-y
Add -1 and \frac{10}{3} to get \frac{7}{3}.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{\frac{7}{3}-y}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{7}{3}-y}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x=\frac{7-3y}{2}
Divide \frac{7}{3}-y by \frac{2}{3} by multiplying \frac{7}{3}-y by the reciprocal of \frac{2}{3}.
-1-y=-\frac{2}{3}\left(5-x\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-1-y=-\frac{10}{3}+\frac{2}{3}x
Use the distributive property to multiply -\frac{2}{3} by 5-x.
-y=-\frac{10}{3}+\frac{2}{3}x+1
Add 1 to both sides.
-y=-\frac{7}{3}+\frac{2}{3}x
Add -\frac{10}{3} and 1 to get -\frac{7}{3}.
-y=\frac{2x-7}{3}
The equation is in standard form.
\frac{-y}{-1}=\frac{2x-7}{-3}
Divide both sides by -1.
y=\frac{2x-7}{-3}
Dividing by -1 undoes the multiplication by -1.
y=\frac{7-2x}{3}
Divide \frac{-7+2x}{3} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}