Evaluate
\frac{5z}{2}-\frac{4x}{5}-\frac{51y}{10}
Expand
\frac{5z}{2}-\frac{4x}{5}-\frac{51y}{10}
Share
Copied to clipboard
-0.6x-\frac{7}{2}y-\frac{7}{5}x-\left(-2.5z\right)+1.2x-1.6y
To find the opposite of \frac{7}{5}x-2.5z, find the opposite of each term.
-0.6x-\frac{7}{2}y-\frac{7}{5}x+2.5z+1.2x-1.6y
The opposite of -2.5z is 2.5z.
-2x-\frac{7}{2}y+2.5z+1.2x-1.6y
Combine -0.6x and -\frac{7}{5}x to get -2x.
-0.8x-\frac{7}{2}y+2.5z-1.6y
Combine -2x and 1.2x to get -0.8x.
-0.8x-\frac{51}{10}y+2.5z
Combine -\frac{7}{2}y and -1.6y to get -\frac{51}{10}y.
-0.6x-\frac{7}{2}y-\frac{7}{5}x-\left(-2.5z\right)+1.2x-1.6y
To find the opposite of \frac{7}{5}x-2.5z, find the opposite of each term.
-0.6x-\frac{7}{2}y-\frac{7}{5}x+2.5z+1.2x-1.6y
The opposite of -2.5z is 2.5z.
-2x-\frac{7}{2}y+2.5z+1.2x-1.6y
Combine -0.6x and -\frac{7}{5}x to get -2x.
-0.8x-\frac{7}{2}y+2.5z-1.6y
Combine -2x and 1.2x to get -0.8x.
-0.8x-\frac{51}{10}y+2.5z
Combine -\frac{7}{2}y and -1.6y to get -\frac{51}{10}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}