Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+5x+3x-5=0
To find the opposite of -3x+5, find the opposite of each term.
-x^{2}+8x-5=0
Combine 5x and 3x to get 8x.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-20}}{2\left(-1\right)}
Multiply 4 times -5.
x=\frac{-8±\sqrt{44}}{2\left(-1\right)}
Add 64 to -20.
x=\frac{-8±2\sqrt{11}}{2\left(-1\right)}
Take the square root of 44.
x=\frac{-8±2\sqrt{11}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{11}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{11}}{-2} when ± is plus. Add -8 to 2\sqrt{11}.
x=4-\sqrt{11}
Divide -8+2\sqrt{11} by -2.
x=\frac{-2\sqrt{11}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{11}}{-2} when ± is minus. Subtract 2\sqrt{11} from -8.
x=\sqrt{11}+4
Divide -8-2\sqrt{11} by -2.
x=4-\sqrt{11} x=\sqrt{11}+4
The equation is now solved.
-x^{2}+5x+3x-5=0
To find the opposite of -3x+5, find the opposite of each term.
-x^{2}+8x-5=0
Combine 5x and 3x to get 8x.
-x^{2}+8x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+8x}{-1}=\frac{5}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=\frac{5}{-1}
Divide 8 by -1.
x^{2}-8x=-5
Divide 5 by -1.
x^{2}-8x+\left(-4\right)^{2}=-5+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-5+16
Square -4.
x^{2}-8x+16=11
Add -5 to 16.
\left(x-4\right)^{2}=11
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x-4=\sqrt{11} x-4=-\sqrt{11}
Simplify.
x=\sqrt{11}+4 x=4-\sqrt{11}
Add 4 to both sides of the equation.