Evaluate
-\frac{3yx^{3}}{14}
Differentiate w.r.t. x
-\frac{9yx^{2}}{14}
Share
Copied to clipboard
\frac{-\frac{9}{4}yx^{3}}{\frac{21}{2}}
Cancel out x^{2}y^{2}z^{2} in both numerator and denominator.
\frac{-\frac{9}{4}yx^{3}\times 2}{21}
Divide -\frac{9}{4}yx^{3} by \frac{21}{2} by multiplying -\frac{9}{4}yx^{3} by the reciprocal of \frac{21}{2}.
\frac{-\frac{9}{2}yx^{3}}{21}
Multiply -\frac{9}{4} and 2 to get -\frac{9}{2}.
-\frac{3}{14}yx^{3}
Divide -\frac{9}{2}yx^{3} by 21 to get -\frac{3}{14}yx^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(-\frac{9z^{2}y^{3}}{4}\right)}{21y^{2}z^{2}}x^{5-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{3y}{14}\right)x^{3})
Do the arithmetic.
3\left(-\frac{3y}{14}\right)x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{9y}{14}\right)x^{2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}