Evaluate
-\frac{367}{500}=-0.734
Factor
-\frac{367}{500} = -0.734
Share
Copied to clipboard
\frac{-\frac{41}{51}+\frac{408}{51}}{-\frac{41}{51}-9}
Convert 8 to fraction \frac{408}{51}.
\frac{\frac{-41+408}{51}}{-\frac{41}{51}-9}
Since -\frac{41}{51} and \frac{408}{51} have the same denominator, add them by adding their numerators.
\frac{\frac{367}{51}}{-\frac{41}{51}-9}
Add -41 and 408 to get 367.
\frac{\frac{367}{51}}{-\frac{41}{51}-\frac{459}{51}}
Convert 9 to fraction \frac{459}{51}.
\frac{\frac{367}{51}}{\frac{-41-459}{51}}
Since -\frac{41}{51} and \frac{459}{51} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{367}{51}}{-\frac{500}{51}}
Subtract 459 from -41 to get -500.
\frac{367}{51}\left(-\frac{51}{500}\right)
Divide \frac{367}{51} by -\frac{500}{51} by multiplying \frac{367}{51} by the reciprocal of -\frac{500}{51}.
\frac{367\left(-51\right)}{51\times 500}
Multiply \frac{367}{51} times -\frac{51}{500} by multiplying numerator times numerator and denominator times denominator.
\frac{-18717}{25500}
Do the multiplications in the fraction \frac{367\left(-51\right)}{51\times 500}.
-\frac{367}{500}
Reduce the fraction \frac{-18717}{25500} to lowest terms by extracting and canceling out 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}