Solve for x
x\geq -\frac{86577}{1100}
Graph
Share
Copied to clipboard
\left(\left(6+6.6\right)\times 1.2\times 6+x\right)\times 1.3\times 6+x\geq 15
Multiply 1.1 and 6 to get 6.6.
\left(12.6\times 1.2\times 6+x\right)\times 1.3\times 6+x\geq 15
Add 6 and 6.6 to get 12.6.
\left(15.12\times 6+x\right)\times 1.3\times 6+x\geq 15
Multiply 12.6 and 1.2 to get 15.12.
\left(90.72+x\right)\times 1.3\times 6+x\geq 15
Multiply 15.12 and 6 to get 90.72.
\left(90.72+x\right)\times 7.8+x\geq 15
Multiply 1.3 and 6 to get 7.8.
707.616+7.8x+x\geq 15
Use the distributive property to multiply 90.72+x by 7.8.
707.616+8.8x\geq 15
Combine 7.8x and x to get 8.8x.
8.8x\geq 15-707.616
Subtract 707.616 from both sides.
8.8x\geq -692.616
Subtract 707.616 from 15 to get -692.616.
x\geq \frac{-692.616}{8.8}
Divide both sides by 8.8. Since 8.8 is positive, the inequality direction remains the same.
x\geq \frac{-692616}{8800}
Expand \frac{-692.616}{8.8} by multiplying both numerator and the denominator by 1000.
x\geq -\frac{86577}{1100}
Reduce the fraction \frac{-692616}{8800} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}