Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\frac{1}{4}-\frac{4}{4}-\frac{1}{2}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Convert 1 to fraction \frac{4}{4}.
\frac{1-4}{4}-\frac{1}{2}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Since \frac{1}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{4}-\frac{1}{2}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Subtract 4 from 1 to get -3.
-\frac{3}{4}-\frac{2}{4}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Least common multiple of 4 and 2 is 4. Convert -\frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{-3-2}{4}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Since -\frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{4}+3-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Subtract 2 from -3 to get -5.
-\frac{5}{4}+\frac{12}{4}-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Convert 3 to fraction \frac{12}{4}.
\frac{-5+12}{4}-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Since -\frac{5}{4} and \frac{12}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}-\left(\frac{81}{4}-27-\frac{9}{2}+9\right)-2\left(1-3\right)
Add -5 and 12 to get 7.
\frac{7}{4}-\left(\frac{81}{4}-\frac{108}{4}-\frac{9}{2}+9\right)-2\left(1-3\right)
Convert 27 to fraction \frac{108}{4}.
\frac{7}{4}-\left(\frac{81-108}{4}-\frac{9}{2}+9\right)-2\left(1-3\right)
Since \frac{81}{4} and \frac{108}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{4}-\left(-\frac{27}{4}-\frac{9}{2}+9\right)-2\left(1-3\right)
Subtract 108 from 81 to get -27.
\frac{7}{4}-\left(-\frac{27}{4}-\frac{18}{4}+9\right)-2\left(1-3\right)
Least common multiple of 4 and 2 is 4. Convert -\frac{27}{4} and \frac{9}{2} to fractions with denominator 4.
\frac{7}{4}-\left(\frac{-27-18}{4}+9\right)-2\left(1-3\right)
Since -\frac{27}{4} and \frac{18}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{4}-\left(-\frac{45}{4}+9\right)-2\left(1-3\right)
Subtract 18 from -27 to get -45.
\frac{7}{4}-\left(-\frac{45}{4}+\frac{36}{4}\right)-2\left(1-3\right)
Convert 9 to fraction \frac{36}{4}.
\frac{7}{4}-\frac{-45+36}{4}-2\left(1-3\right)
Since -\frac{45}{4} and \frac{36}{4} have the same denominator, add them by adding their numerators.
\frac{7}{4}-\left(-\frac{9}{4}\right)-2\left(1-3\right)
Add -45 and 36 to get -9.
\frac{7}{4}+\frac{9}{4}-2\left(1-3\right)
The opposite of -\frac{9}{4} is \frac{9}{4}.
\frac{7+9}{4}-2\left(1-3\right)
Since \frac{7}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\frac{16}{4}-2\left(1-3\right)
Add 7 and 9 to get 16.
4-2\left(1-3\right)
Divide 16 by 4 to get 4.
4-2\left(-2\right)
Subtract 3 from 1 to get -2.
4-\left(-4\right)
Multiply 2 and -2 to get -4.
4+4
The opposite of -4 is 4.
8
Add 4 and 4 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}