Solve for y
y=-2
y=7
Graph
Share
Copied to clipboard
y^{2}-10y+25=2y^{2}-15y+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25-2y^{2}=-15y+11
Subtract 2y^{2} from both sides.
-y^{2}-10y+25=-15y+11
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-10y+25+15y=11
Add 15y to both sides.
-y^{2}+5y+25=11
Combine -10y and 15y to get 5y.
-y^{2}+5y+25-11=0
Subtract 11 from both sides.
-y^{2}+5y+14=0
Subtract 11 from 25 to get 14.
a+b=5 ab=-14=-14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by+14. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=7 b=-2
The solution is the pair that gives sum 5.
\left(-y^{2}+7y\right)+\left(-2y+14\right)
Rewrite -y^{2}+5y+14 as \left(-y^{2}+7y\right)+\left(-2y+14\right).
-y\left(y-7\right)-2\left(y-7\right)
Factor out -y in the first and -2 in the second group.
\left(y-7\right)\left(-y-2\right)
Factor out common term y-7 by using distributive property.
y=7 y=-2
To find equation solutions, solve y-7=0 and -y-2=0.
y^{2}-10y+25=2y^{2}-15y+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25-2y^{2}=-15y+11
Subtract 2y^{2} from both sides.
-y^{2}-10y+25=-15y+11
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-10y+25+15y=11
Add 15y to both sides.
-y^{2}+5y+25=11
Combine -10y and 15y to get 5y.
-y^{2}+5y+25-11=0
Subtract 11 from both sides.
-y^{2}+5y+14=0
Subtract 11 from 25 to get 14.
y=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 14}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-1\right)\times 14}}{2\left(-1\right)}
Square 5.
y=\frac{-5±\sqrt{25+4\times 14}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-5±\sqrt{25+56}}{2\left(-1\right)}
Multiply 4 times 14.
y=\frac{-5±\sqrt{81}}{2\left(-1\right)}
Add 25 to 56.
y=\frac{-5±9}{2\left(-1\right)}
Take the square root of 81.
y=\frac{-5±9}{-2}
Multiply 2 times -1.
y=\frac{4}{-2}
Now solve the equation y=\frac{-5±9}{-2} when ± is plus. Add -5 to 9.
y=-2
Divide 4 by -2.
y=-\frac{14}{-2}
Now solve the equation y=\frac{-5±9}{-2} when ± is minus. Subtract 9 from -5.
y=7
Divide -14 by -2.
y=-2 y=7
The equation is now solved.
y^{2}-10y+25=2y^{2}-15y+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
y^{2}-10y+25-2y^{2}=-15y+11
Subtract 2y^{2} from both sides.
-y^{2}-10y+25=-15y+11
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-10y+25+15y=11
Add 15y to both sides.
-y^{2}+5y+25=11
Combine -10y and 15y to get 5y.
-y^{2}+5y=11-25
Subtract 25 from both sides.
-y^{2}+5y=-14
Subtract 25 from 11 to get -14.
\frac{-y^{2}+5y}{-1}=-\frac{14}{-1}
Divide both sides by -1.
y^{2}+\frac{5}{-1}y=-\frac{14}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-5y=-\frac{14}{-1}
Divide 5 by -1.
y^{2}-5y=14
Divide -14 by -1.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-5y+\frac{25}{4}=14+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-5y+\frac{25}{4}=\frac{81}{4}
Add 14 to \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{81}{4}
Factor y^{2}-5y+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
y-\frac{5}{2}=\frac{9}{2} y-\frac{5}{2}=-\frac{9}{2}
Simplify.
y=7 y=-2
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}