Evaluate
4x^{2}-y^{2}
Expand
4x^{2}-y^{2}
Share
Copied to clipboard
y^{3}-6y^{2}x+12yx^{2}-8x^{3}-\left(2x-y\right)\left(-2x-y\right)-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(y-2x\right)^{3}.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}-\left(-4x^{2}+y^{2}\right)-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use the distributive property to multiply 2x-y by -2x-y and combine like terms.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
To find the opposite of -4x^{2}+y^{2}, find the opposite of each term.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-\left(8x^{3}+12x^{2}y+6xy^{2}+y^{3}\right)-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2x+y\right)^{3}.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-8x^{3}-12x^{2}y-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
To find the opposite of 8x^{3}+12x^{2}y+6xy^{2}+y^{3}, find the opposite of each term.
y^{3}-6y^{2}x+12yx^{2}-16x^{3}+4x^{2}-y^{2}-12x^{2}y-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine -8x^{3} and -8x^{3} to get -16x^{3}.
y^{3}-6y^{2}x-16x^{3}+4x^{2}-y^{2}-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine 12yx^{2} and -12x^{2}y to get 0.
y^{3}-12y^{2}x-16x^{3}+4x^{2}-y^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine -6y^{2}x and -6xy^{2} to get -12y^{2}x.
-12y^{2}x-16x^{3}+4x^{2}-y^{2}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine y^{3} and -y^{3} to get 0.
-12y^{2}x-16x^{3}+4x^{2}-y^{2}+4x\left(4x^{2}+3y^{2}\right)
The opposite of -4x\left(4x^{2}+3y^{2}\right) is 4x\left(4x^{2}+3y^{2}\right).
-12y^{2}x-16x^{3}+4x^{2}-y^{2}+16x^{3}+12xy^{2}
Use the distributive property to multiply 4x by 4x^{2}+3y^{2}.
-12y^{2}x+4x^{2}-y^{2}+12xy^{2}
Combine -16x^{3} and 16x^{3} to get 0.
4x^{2}-y^{2}
Combine -12y^{2}x and 12xy^{2} to get 0.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}-\left(2x-y\right)\left(-2x-y\right)-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(y-2x\right)^{3}.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}-\left(-4x^{2}+y^{2}\right)-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use the distributive property to multiply 2x-y by -2x-y and combine like terms.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-\left(2x+y\right)^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
To find the opposite of -4x^{2}+y^{2}, find the opposite of each term.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-\left(8x^{3}+12x^{2}y+6xy^{2}+y^{3}\right)-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2x+y\right)^{3}.
y^{3}-6y^{2}x+12yx^{2}-8x^{3}+4x^{2}-y^{2}-8x^{3}-12x^{2}y-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
To find the opposite of 8x^{3}+12x^{2}y+6xy^{2}+y^{3}, find the opposite of each term.
y^{3}-6y^{2}x+12yx^{2}-16x^{3}+4x^{2}-y^{2}-12x^{2}y-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine -8x^{3} and -8x^{3} to get -16x^{3}.
y^{3}-6y^{2}x-16x^{3}+4x^{2}-y^{2}-6xy^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine 12yx^{2} and -12x^{2}y to get 0.
y^{3}-12y^{2}x-16x^{3}+4x^{2}-y^{2}-y^{3}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine -6y^{2}x and -6xy^{2} to get -12y^{2}x.
-12y^{2}x-16x^{3}+4x^{2}-y^{2}-\left(-4x\left(4x^{2}+3y^{2}\right)\right)
Combine y^{3} and -y^{3} to get 0.
-12y^{2}x-16x^{3}+4x^{2}-y^{2}+4x\left(4x^{2}+3y^{2}\right)
The opposite of -4x\left(4x^{2}+3y^{2}\right) is 4x\left(4x^{2}+3y^{2}\right).
-12y^{2}x-16x^{3}+4x^{2}-y^{2}+16x^{3}+12xy^{2}
Use the distributive property to multiply 4x by 4x^{2}+3y^{2}.
-12y^{2}x+4x^{2}-y^{2}+12xy^{2}
Combine -16x^{3} and 16x^{3} to get 0.
4x^{2}-y^{2}
Combine -12y^{2}x and 12xy^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}