Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-4y+4=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-25=0
Subtract 25 from both sides.
y^{2}-4y-21=0
Subtract 25 from 4 to get -21.
a+b=-4 ab=-21
To solve the equation, factor y^{2}-4y-21 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-7 b=3
The solution is the pair that gives sum -4.
\left(y-7\right)\left(y+3\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=7 y=-3
To find equation solutions, solve y-7=0 and y+3=0.
y^{2}-4y+4=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-25=0
Subtract 25 from both sides.
y^{2}-4y-21=0
Subtract 25 from 4 to get -21.
a+b=-4 ab=1\left(-21\right)=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by-21. To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-7 b=3
The solution is the pair that gives sum -4.
\left(y^{2}-7y\right)+\left(3y-21\right)
Rewrite y^{2}-4y-21 as \left(y^{2}-7y\right)+\left(3y-21\right).
y\left(y-7\right)+3\left(y-7\right)
Factor out y in the first and 3 in the second group.
\left(y-7\right)\left(y+3\right)
Factor out common term y-7 by using distributive property.
y=7 y=-3
To find equation solutions, solve y-7=0 and y+3=0.
y^{2}-4y+4=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-25=0
Subtract 25 from both sides.
y^{2}-4y-21=0
Subtract 25 from 4 to get -21.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-21\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-4\right)±\sqrt{16-4\left(-21\right)}}{2}
Square -4.
y=\frac{-\left(-4\right)±\sqrt{16+84}}{2}
Multiply -4 times -21.
y=\frac{-\left(-4\right)±\sqrt{100}}{2}
Add 16 to 84.
y=\frac{-\left(-4\right)±10}{2}
Take the square root of 100.
y=\frac{4±10}{2}
The opposite of -4 is 4.
y=\frac{14}{2}
Now solve the equation y=\frac{4±10}{2} when ± is plus. Add 4 to 10.
y=7
Divide 14 by 2.
y=-\frac{6}{2}
Now solve the equation y=\frac{4±10}{2} when ± is minus. Subtract 10 from 4.
y=-3
Divide -6 by 2.
y=7 y=-3
The equation is now solved.
\sqrt{\left(y-2\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
y-2=5 y-2=-5
Simplify.
y=7 y=-3
Add 2 to both sides of the equation.