Evaluate
y\left(y\left(5-2y\right)^{2}+y-5\right)
Expand
4y^{4}-20y^{3}+26y^{2}-5y
Graph
Share
Copied to clipboard
y^{2}-5y+25y^{2}-20yy^{2}+4\left(y^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5y-2y^{2}\right)^{2}.
y^{2}-5y+25y^{2}-20y^{3}+4\left(y^{2}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y^{2}-5y+25y^{2}-20y^{3}+4y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
26y^{2}-5y-20y^{3}+4y^{4}
Combine y^{2} and 25y^{2} to get 26y^{2}.
y^{2}-5y+25y^{2}-20yy^{2}+4\left(y^{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5y-2y^{2}\right)^{2}.
y^{2}-5y+25y^{2}-20y^{3}+4\left(y^{2}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y^{2}-5y+25y^{2}-20y^{3}+4y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
26y^{2}-5y-20y^{3}+4y^{4}
Combine y^{2} and 25y^{2} to get 26y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}